[1]

M. Abate, T. Aikou, G. Patrizio, Preface for “Complex Finsler geometry”. In: *Finsler geometry* (*Seattle, WA*, 1995), volume 196 of *Contemp. Math*., 97–100, Amer. Math. Soc. 1996. MR1403581 Zbl 0853.53049Google Scholar

[2]

M. Abate, G. Patrizio, *Finsler metrics—a global approach*. Springer 1994. MR1323428 Zbl 0837.53001Google Scholar

[3]

M. Abate, G. Patrizio, Finsler metrics of constant curvature and the characterization of tube domains. In: *Finsler geometry* (*Seattle, WA*, 1995), volume 196 of *Contemp. Math*., 101–107, Amer. Math. Soc. 1996. MR1403582 Zbl 0861.53071Google Scholar

[4]

M. Abate, G. Patrizio, Holomorphic curvature of Finsler metrics and complex geodesics. *J. Geom. Anal*. **6** (1996), 341–363 (1997). MR1471896 Zbl 0896.32013CrossrefGoogle Scholar

[5]

T. Aikou, On complex Finsler manifolds. *Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem*. **24** (1991), 9–25. MR1172107 Zbl 0783.53019Google Scholar

[6]

T. Aikou, Some remarks on locally conformal complex Berwald spaces. In: *Finsler geometry* (*Seattle, WA*, 1995), volume 196 of *Contemp. Math*., 109–120, Amer. Math. Soc. 1996. MR1403583 Zbl 0857.53015Google Scholar

[7]

D. Bao, S.-S. Chern, Z. Shen, *An introduction to Riemann-Finsler geometry*. Springer 2000. MR1747675 Zbl 0954.53001Google Scholar

[8]

L. Huang, X. Mo, On some explicit constructions of dually flat Finsler metrics. *J. Math. Anal. Appl*. **405** (2013), 565–573. MR3061034 Zbl 1306.53063Web of ScienceCrossrefGoogle Scholar

[9]

L. Huang, X. Mo, On some dually flat Finsler metrics with orthogonal invariance. *Nonlinear Anal*. **108** (2014), 214–222. MR3238303 Zbl 1301.53018CrossrefWeb of ScienceGoogle Scholar

[10]

L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule. *Bull. Soc. Math. France* **109** (1981), 427–474. MR660145 Zbl 0492.32025Google Scholar

[11]

L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains. *Anal. Math*. **8** (1982), 257–261. MR690838 Zbl 0509.32015CrossrefGoogle Scholar

[12]

G. Munteanu, *Complex spaces in Finsler, Lagrange and Hamilton geometries*, volume 141 of *Fundamental Theories of Physics*. Kluwer, Dordrecht 2004. MR2102340 Zbl 1064.53047Google Scholar

[13]

M.-Y. Pang, Finsler metrics with properties of the Kobayashi metric on convex domains. *Publ. Mat*. **36** (1992), 131–155. MR1179607 Zbl 0754.53054CrossrefGoogle Scholar

[14]

Z. Shen, Riemann-Finsler geometry with applications to information geometry. *Chinese Ann. Math. Ser. B* **27** (2006), 73–94. MR2209953 Zbl 1107.53013CrossrefGoogle Scholar

[15]

L. Sun, C. Zhong, Characterizations of complex Finsler connections and weakly complex Berwald metrics. *Differential Geom. Appl*. **31** (2013), 648–671. MR3093496 Zbl 1319.53083CrossrefWeb of ScienceGoogle Scholar

[16]

C. Zhong, On real and complex Berwald connections associated to strongly convex weakly Kähler–Finsler metric. *Differential Geom. Appl*. **29** (2011), 388–408. MR2795846 Zbl 1219.53028CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.