[1]

S. Artstein-Avidan, D. Florentin, Y. Ostrover, Remarks about mixed discriminants and volumes. *Commun*. *Contemp*. *Math*. **16** (2014), 1350031, 14 pp. MR3195153 Zbl 1292.52004CrossrefWeb of ScienceGoogle Scholar

[2]

S. Artstein-Avidan, A. Giannopoulos, V. D. Milman, *Asymptotic geometric analysis. Part I*, volume 202 of *Mathematical Surveys and Monographs*. Amer. Math. Soc. 2015. MR3331351 Zbl 1337.52001Google Scholar

[3]

K. Ball, Shadows of convex bodies. *Trans*. *Amer*. *Math*. *Soc*. **327** (1991), 891–901. MR1035998 Zbl 0746.52007CrossrefGoogle Scholar

[4]

K. Ball, Convex geometry and functional analysis. In: *Handbook of the geometry of Banach spaces*, *Vol*. *I*, 161–194, North-Holland 2001. MR1863692 Zbl 1017.46004Google Scholar

[5]

F. Barthe, On a reverse form of the Brascamp-Lieb inequality. *Invent*. *Math*. **134** (1998), 335–361. MR1650312 Zbl 0901.26010CrossrefGoogle Scholar

[6]

L. Berwald, Verallgemeinerung eines Mittelwertsatzes von J. Favard für positive konkave Functionen. *Acta Math*. **79** (1947), 17-37. MR0021036 Zbl 0029.11704CrossrefGoogle Scholar

[7]

U. Betke, W. Weil, Isoperimetric inequalities for the mixed area of plane convex sets. *Arch*. *Math*. *(Basel)* **57** (1991), 501–507. MR1129527 Zbl 0765.52011CrossrefGoogle Scholar

[8]

B. Bollobás, A. Thomason, Projections of bodies and hereditary properties of hypergraphs. *Bull. London Math*. *Soc*. **27** (1995), 417–424. MR1338683 Zbl 0836.05072CrossrefGoogle Scholar

[9]

S. Brazitikos, A. Giannopoulos, P. Valettas, B.-H. Vritsiou, *Geometry of isotropic convex bodies*, volume 196 of *Mathematical Surveys and Monographs*. Amer. Math. Soc. 2014. MR3185453 Zbl 1304.52001Google Scholar

[10]

Y. D. Burago, V. A. Zalgaller, *Geometric inequalities*. Springer 1988. MR936419 Zbl 0633.53002Google Scholar

[11]

A. Dembo, T. M. Cover, J. A. Thomas, Information-theoretic inequalities. *IEEE Trans*. *Inform*. *Theory* **37** (1991), 1501–1518. MR1134291 Zbl 0741.94001CrossrefGoogle Scholar

[12]

M. Fradelizi, A. Giannopoulos, M. Meyer, Some inequalities about mixed volumes. *Israel J*. *Math*. **135** (2003), 157–179. MR1997041 Zbl 1045.52002CrossrefGoogle Scholar

[13]

R. J. Gardner, *Geometric tomography*, volume 58 of *Encyclopedia of Mathematics and its Applications*. Cambridge Univ. Press 2006. MR2251886 Zbl 1102.52002Google Scholar

[14]

A. Giannopoulos, M. Hartzoulaki, G. Paouris, On a local version of the Aleksandrov–Fenchel inequality for the quermassintegrals of a convex body. *Proc*. *Amer*. *Math*. *Soc*. **130** (2002), 2403–2412. MR1897466 Zbl 1003.52005CrossrefGoogle Scholar

[15]

A. Giannopoulos, A. Koldobsky, P. Valettas, Inequalities for the surface area of projections of convex bodies. *Canad*. *J*. *Math*., accepted, 23 pages.Google Scholar

[16]

D. Hug, R. Schneider, Reverse inequalities for zonoids and their application. *Adv*. *Math*. **228** (2011), 2634–2646. MR2838052 Zbl 1230.52021CrossrefWeb of ScienceGoogle Scholar

[17]

A.-J. Li, Q. Huang, The dual Loomis-Whitney inequality. *Bull*. *Lond*. *Math*. *Soc*. **48** (2016), 676–690. MR3532142 Zbl 1351.52006CrossrefGoogle Scholar

[18]

L. H. Loomis, H. Whitney, An inequality related to the isoperimetric inequality. *Bull*. *Amer*. *Math*. *Soc* **55** (1949), 961–962. MR0031538 Zbl 0035.38302CrossrefGoogle Scholar

[19]

M. Meyer, A volume inequality concerning sections of convex sets. *Bull*. *London Math*. *Soc*. **20** (1988), 151–155. MR924244 Zbl 0639.52009CrossrefGoogle Scholar

[20]

G. Paouris, Concentration of mass on convex bodies. *Geom*. *Funct*. *Anal*. **16** (2006), 1021–1049. MR2276533 Zbl 1114.52004CrossrefGoogle Scholar

[21]

G. Paouris, Small ball probability estimates for log-concave measures. *Trans*. *Amer*. *Math*. *Soc*. **364** (2012), 287–308. MR2833584 Zbl 1248.60027CrossrefGoogle Scholar

[22]

C. Saroglou, I. Soprunov, A. Zvavitch, Characterization of simplices via the Bezout inequality for mixed volumes.*Proc*. *Amer*. *Math*. *Soc*. **144** (2016), 5333–5340. MR3556275 Zbl 1351.52005Web of ScienceCrossrefGoogle Scholar

[23]

R. Schneider, *Convex bodies*: *the Brunn–Minkowski theory*, volume 151 of *Encyclopedia of Mathematics and its Applications*. Cambridge Univ. Press 2014. MR3155183 Zbl 1287.52001Google Scholar

[24]

I. Soprunov, A. Zvavitch, Bezout inequality for mixed volumes. *Int*. *Math*. *Res*. *Not*. *IMRN* (2016), no. 23, 7230–7252. MR3632081Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.