[1]

S. Ball, M. R. Brown, The six semifield planes associated with a semifield flock. *Adv. Math*. **189** (2004), 68–87. MR2093480 Zbl 1142.12305CrossrefGoogle Scholar

[2]

S. Ball, M. Lavrauw, Commutative semifields of rank 2 over their middle nucleus. In: *Finite fields with applications to coding theory, cryptography and related areas* (*Oaxaca*, 2001), 1–21, Springer 2002. MR1995325 Zbl 1102.12300Google Scholar

[3]

I. Bloemen, J. A. Thas, H. Van Maldeghem, Translation ovoids of generalized quadrangles and hexagons. *Geom. Dedicata* **72** (1998), 19–62. MR1644139 Zbl 1035.51002CrossrefGoogle Scholar

[4]

A. Blokhuis, M. Lavrauw, S. Ball, On the classification of semifield flocks. *Adv. Math*. **180** (2003), 104–111. MR2019217 Zbl 1042.51007CrossrefGoogle Scholar

[5]

C. Blondeau, K. Nyberg, Perfect nonlinear functions and cryptography. *Finite Fields Appl*. **32** (2015), 120–147. MR3293407 Zbl 1372.94413CrossrefWeb of ScienceGoogle Scholar

[6]

L. Budaghyan, T. Helleseth, Planar functions and commutative semifields. *Tatra Mt. Math. Publ*. **45** (2010), 15–25. MR2680891 Zbl 1274.94046Google Scholar

[7]

I. Cardinali, O. Polverino, R. Trombetti, Semifield planes of order *q*^{4} with kernel *F*_{q2} and center *F*_{q} . *European J. Combin*. **27** (2006), 940–961. MR2226429 Zbl 1108.51010CrossrefGoogle Scholar

[8]

S. D. Cohen, M. J. Ganley, Commutative semifields, two-dimensional over their middle nuclei. *J. Algebra* **75** (1982), 373–385. MR653897 Zbl 0499.12021CrossrefGoogle Scholar

[9]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory. *J. Combin. Theory Ser. A* **25** (1978), 226–241. MR514618 Zbl 0397.94012CrossrefGoogle Scholar

[10]

L. E. Dickson, Linear algebras in which division is always uniquely possible. *Trans. Amer. Math. Soc*. **7** (1906), 370–390. MR1500755 JFM 37.0111.06CrossrefGoogle Scholar

[11]

J. C. Fisher, J. A. Thas, Flocks in PG(3, *q*). *Math. Z*. **169** (1979), 1–11. MR546988 Zbl 0396.51009CrossrefGoogle Scholar

[12]

D. R. Hughes, F. C. Piper, *Projective planes*. Springer 1973. MR0333959 Zbl 0267.50018Google Scholar

[13]

M. Lavrauw, *Scattered spaces with respect to spreads, and eggs in finite projective spaces*. PhD thesis, Eindhoven University of Technology, Eindhoven 2001. MR1866508 Zbl 0990.51003Google Scholar

[14]

M. Lavrauw, Semifield flocks, eggs, and ovoids of *Q*(4, *q*). *Adv. Geom*. **5** (2005), 333–345. MR2154828 Zbl 1116.51011Google Scholar

[15]

M. Lavrauw, The two sets of three semifields associated with a semifield flock. *Innov. Incidence Geom*. **2** (2005), 101–107. MR2214717 Zbl 1097.51002Google Scholar

[16]

M. Lavrauw, Sublines of prime order contained in the set of internal points of a conic. *Des. Codes Cryptogr*. **38** (2006), 113–123. MR2191128 Zbl 1172.51008CrossrefGoogle Scholar

[17]

M. Lavrauw, Finite semifields and nonsingular tensors. *Des. Codes Cryptogr*. **68** (2013), 205–227. MR3046347 Zbl 1304.12004CrossrefGoogle Scholar

[18]

M. Lavrauw, T. Penttila, On eggs and translation generalised quadrangles. *J. Combin. Theory Ser. A* **96** (2001), 303–315. MR1864125 Zbl 1001.51004CrossrefGoogle Scholar

[19]

M. Lavrauw, O. Polverino, Finite semifields. In: *Current research topics in Galois geometry*, 131–159, New York, NY: Nova Science Publishers/Novinka 2014. Zbl 1334.51007Google Scholar

[20]

M. Lavrauw, G. Van de Voorde, Field reduction and linear sets in finite geometry. In: *Topics in finite fields*, volume 632 of *Contemp. Math*., 271–293, Amer. Math. Soc. 2015. MR3329986 Zbl 1351.51008Google Scholar

[21]

M. Law, T. Penttila, Classification of flocks of the quadratic cone over fields of order at most 29. *Adv. Geom*., suppl. (2003), S232–S244. MR2028400 Zbl 1038.51011Google Scholar

[22]

G. Lunardon, Flocks, ovoids of Q(4, *q*) and designs. *Geom. Dedicata* **66** (1997), 163–173. MR1458789 Zbl 0881.51012CrossrefGoogle Scholar

[23]

G. Marino, O. Polverino, R. Trombetti, Towards the classification of rank 2 semifields 6-dimensional over their center. *Des. Codes Cryptogr*. **61** (2011), 11–29. MR2810500 Zbl 1261.51001CrossrefGoogle Scholar

[24]

G. Menichetti, On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field. *J. Algebra* **47** (1977), 400–410. MR0453823 Zbl 0362.17002CrossrefGoogle Scholar

[25]

S. E. Payne, *Topics in Finite Geometry: Ovals, Ovoids, and Generalized Quadrangles*. UC Denver Course Notes 2009.Google Scholar

[26]

S. E. Payne, J. A. Thas, *Finite generalized quadrangles*. Pitman 1984. MR767454 Zbl 0551.05027Google Scholar

[27]

T. Penttila, B. Williams, Ovoids of parabolic spaces. *Geom. Dedicata* **82** (2000), 1–19. MR1789057 Zbl 0969.51008CrossrefGoogle Scholar

[28]

I. F. Rúa, E. F. Combarro, J. Ranilla, Classification of semifields of order 64. *J. Algebra* **322** (2009), 4011–4029. MR2556135 Zbl 1202.12003Web of ScienceCrossrefGoogle Scholar

[29]

I. F. Rúa, E. F. Combarro, J. Ranilla, Determination of division algebras with 243 elements. *Finite Fields Appl*. **18** (2012), 1148–1155. MR3019190 Zbl 1294.12006Web of ScienceCrossrefGoogle Scholar

[30]

J. A. Thas, Generalized quadrangles and flocks of cones. *European J. Combin*. **8** (1987), 441–452. MR930180 Zbl 0646.51019CrossrefGoogle Scholar

[31]

J. A. Thas, Generalized quadrangles of order (*s*, *s*^{2}). III. *J. Combin. Theory Ser. A* **87** (1999), 247–272. MR1704261 Zbl 0949.51003CrossrefGoogle Scholar

[32]

F. D. Veldkamp, Polar geometry. IV. *Nederl. Akad. Wetensch. Proc. Ser. A* 62 *= Indag. Math*. 21 (1959), 534–551. MR0125472 Zbl 0090.11902Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.