Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year

IMPACT FACTOR 2017: 0.734

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.695
Source Normalized Impact per Paper (SNIP) 2017: 0.891

Mathematical Citation Quotient (MCQ) 2017: 0.62

See all formats and pricing
More options …
Ahead of print


Pseudo-embeddings of the (point, k-spaces)-geometry of PG(n, 2) and projective embeddings of DW(2n − 1, 2)

Bart De Bruyn
Published Online: 2018-03-26 | DOI: https://doi.org/10.1515/advgeom-2017-0065


We classify all homogeneous pseudo-embeddings of the point-line geometry defined by the points and k-dimensional subspaces of PG(n, 2), and use this to study the local structure of homogeneous full projective embeddings of the dual polar space DW(2n − 1, 2). Our investigation allows us to distinguish n possible types for such homogeneous embeddings. For each of these n types, we construct a homogeneous full projective embedding of DW(2n − 1, 2).

Keywords: Homogeneous projective embedding; (symplectic) dual polar space; pseudo-embedding; pseudo-hyperplane

MSC 2010: 05B25; 51A45; 51A50


  • [1]

    E. F. Assmus, Jr., J. D. Key, Designs and their codes, volume 103 of Cambridge Tracts in Mathematics. Cambridge Univ. Press 1992. MR1192126 Zbl 0762.05001Google Scholar

  • [2]

    R. J. Blok, A. E. Brouwer, The geometry far from a residue. In: Groups and geometries (Siena, 1996), 29–38, Birkhäuser 1998. MR1644973 Zbl 0899.51005Google Scholar

  • [3]

    R. J. Blok, I. Cardinali, B. De Bruyn, A. Pasini, Polarized and homogeneous embeddings of dual polar spaces. J. Algebraic Combin. 30 (2009), 381–399. MR2545502 Zbl 1204.51003CrossrefGoogle Scholar

  • [4]

    A. Blokhuis, A. E. Brouwer, The universal embedding dimension of the binary symplectic dual polar space. Discrete Math. 264 (2003), 3–11. MR1972016 Zbl 1018.51001CrossrefGoogle Scholar

  • [5]

    F. Buekenhout, P. Cameron, Projective and affine geometry over division rings. In: Handbook of incidence geometry, 27–62, North-Holland 1995. MR1360717 Zbl 0822.51001Google Scholar

  • [6]

    I. Cardinali, B. De Bruyn, The structure of full polarized embeddings of symplectic and Hermitian dual polar spaces. Adv. Geom. 8 (2008), 111–137. MR2394058 Zbl 1158.51001Web of ScienceGoogle Scholar

  • [7]

    B. N. Cooperstein, On the generation of some dual polar spaces of symplectic type over GF(2). European J. Combin. 18 (1997), 741–749. MR1478821 Zbl 0890.51003CrossrefGoogle Scholar

  • [8]

    B. N. Cooperstein, On the generation of dual polar spaces of symplectic type over finite fields. J. Combin. Theory Ser. A 83 (1998), 221–232. MR1636980 Zbl 0914.51002CrossrefGoogle Scholar

  • [9]

    B. De Bruyn, Isometric full embeddings of DW(2n – 1, q) into DH(2n – 1, q2). Finite Fields Appl. 14 (2008), 188–200. MR2381486 Zbl 1139.51009Web of ScienceCrossrefGoogle Scholar

  • [10]

    B. De Bruyn, The structure of the spin-embeddings of dual polar spaces and related geometries. European J. Combin. 29 (2008), 1242–1256. MR2419227 Zbl 1146.51003Web of ScienceCrossrefGoogle Scholar

  • [11]

    B. De Bruyn, Two new classes of hyperplanes of the dual polar space DH(2n – 1, 4) not arising from the Grassmann embedding. Linear Algebra Appl. 429 (2008), 2030–2045. MR2446638 Zbl 1160.51003Web of ScienceCrossrefGoogle Scholar

  • [12]

    B. De Bruyn, On isometric full embeddings of symplectic dual polar spaces into Hermitian dual polar spaces. Linear Algebra Appl. 430 (2009), 2541–2552. MR2508311 Zbl 1166.51002CrossrefWeb of ScienceGoogle Scholar

  • [13]

    B. De Bruyn, On sets of odd type of PG(n, 4) and the universal embedding of the dual polar space DH(2n – 1, 4). Discrete Math. 312 (2012), 554–560. MR2854799 Zbl 1262.51009CrossrefWeb of ScienceGoogle Scholar

  • [14]

    B. De Bruyn, The pseudo-hyperplanes and homogeneous pseudo-embeddings of AG(n, 4) and PG(n, 4). Des. Codes Cryptogr. 65 (2012), 127–156. MR2943652 Zbl 1248.51001CrossrefGoogle Scholar

  • [15]

    B. De Bruyn, Pseudo-embeddings and pseudo-hyperplanes. Adv. Geom. 13 (2013), 71–95. MR3011535 Zbl 1267.51002Web of ScienceGoogle Scholar

  • [16]

    B. De Bruyn, The pseudo-hyperplanes and homogeneous pseudo-embeddings of the generalized quadrangles of order (3, t). Des. Codes Cryptogr. 68 (2013), 259–284. MR3046349 Zbl 1288.51004CrossrefGoogle Scholar

  • [17]

    N. Hamada, The rank of the incidence matrix of points and d-flats in finite geometries. J. Sci. Hiroshima Univ. Ser. A-I Math. 32 (1968), 381–396. MR0243903 Zbl 0172.43203Google Scholar

  • [18]

    J. W. P. Hirschfeld, X. Hubaut, Sets of even type in PG(3, 4), alias the binary (85, 24) projective geometry code. J. Combin. Theory Ser. A 29 (1980), 101–112. MR577547 Zbl 0438.05021CrossrefGoogle Scholar

  • [19]

    S. P. Inamdar, N. S. Narasimha Sastry, Codes from Veronese and Segre embeddings and Hamada’s formula. J. Combin. Theory Ser. A 96 (2001), 20–30. MR1855786 Zbl 1037.94010CrossrefGoogle Scholar

  • [20]

    P. Li, On the universal embedding of the Sp2n (2) dual polar space. J. Combin. Theory Ser. A 94 (2001), 100–117. MR1816249 Zbl 0999.51002CrossrefGoogle Scholar

  • [21]

    P. Li, On the universal embedding of the U2n (2) dual polar space. J. Combin. Theory Ser. A 98 (2002), 235–252. MR1899625 Zbl 1003.51002CrossrefGoogle Scholar

  • [22]

    P. McClurg, On the universal embedding of dual polar spaces of type Sp2n (2). J. Combin. Theory Ser. A 90 (2000), 104–122. MR1749425 Zbl 1028.51003CrossrefGoogle Scholar

  • [23]

    A. Pasini, Embeddings and expansions. Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 585–626. MR2040533 Zbl 1110.51004Google Scholar

  • [24]

    B. Sherman, On sets with only odd secants in geometries over GF(4). J. London Math. Soc. (2) 27 (1983), 539–551. MR697146 Zbl 0535.51010Google Scholar

  • [25]

    E. Shult, On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 299–316. MR1443981 Zbl 0923.51013Google Scholar

  • [26]

    M. Tallini Scafati, {k, n}-archi di un piano grafico finito, con particolare riguardo a quelli con due caratteri. I. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 40 (1966), 812–818. MR0213953 Zbl 0146.41801Google Scholar

  • [27]

    M. Tallini Scafati, Caratterizzazione grafica delle forme hermitiane di un Sr,q. Rend. Mat. e Appl. (5) 26 (1967), 273–303. MR0238173 Zbl 0162.24201Google Scholar

  • [28]

    S. Yoshiara, Embeddings of flag-transitive classical locally polar geometries of rank 3. Geom. Dedicata 43 (1992), 121–165. MR1180647 Zbl 0760.51010Google Scholar

About the article

Received: 2016-11-03

Published Online: 2018-03-26

Citation Information: Advances in Geometry, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2017-0065.

Export Citation

© 2017 Walter de Gruyter GmbH Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in