[1]

E. F. Assmus, Jr., J. D. Key, *Designs and their codes*, volume 103 of *Cambridge Tracts in Mathematics*. Cambridge Univ. Press 1992. MR1192126 Zbl 0762.05001Google Scholar

[2]

S. Ball, A. Blokhuis, The classification of maximal arcs in small Desarguesian planes. *Bull. Belg. Math. Soc. Simon Stevin* **9** (2002), 433–445. MR2016582 Zbl 1047.51002Google Scholar

[3]

S. Ball, A. Blokhuis, F. Mazzocca, Maximal arcs in Desarguesian planes of odd order do not exist. *Combinatorica* **17** (1997), 31–41. MR1466573 Zbl 0880.51003CrossrefGoogle Scholar

[4]

T. Beth, D. Jungnickel, H. Lenz, *Design theory. Vol. I/II*, volume 69/78 of *Encyclopedia of Mathematics and its Applications*. Cambridge Univ. Press 1999. MR1729456 MR1742365 Zbl 0945.05004 Zbl 0945.05005Google Scholar

[5]

R. C. Bose, A. Barlotti, Linear representation of a class of projective planes in a four dimensional projective space. *Ann. Mat. Pura Appl*. (4) **88** (1971), 9–31. MR0308925 Zbl 0229.50024CrossrefGoogle Scholar

[6]

R. C. Bose, S. S. Shrikhande, Embedding the complement of an oval in a projective plane of even order. *Discrete Math*. **6** (1973), 305–312. MR0327547 Zbl 0288.05017CrossrefGoogle Scholar

[7]

W. Bosma, J. Cannon, *Handbook of Magma Functions*. Department of Mathematics, University of Sydney, 1994.Google Scholar

[8]

A. E. Brouwer, Some unitals on 28 points and their embeddings in projective planes of order 9. In: *Geometries and groups* (*Berlin*, 1981), volume 893 of *Lecture Notes in Math*., 183–188, Springer 1981. MR655065 Zbl 0557.51002Google Scholar

[9]

L. L. Carpenter, *Designs and codes from hyperovals*. PhD thesis, Clemson University, 1996.Google Scholar

[10]

C. J. Colbourn, J. H. Dinitz, editors, *Handbook of combinatorial designs*. Chapman & Hall/CRC, Boca Raton, FL 2007. MR2246267 Zbl 1101.05001Google Scholar

[11]

F. De Clerck, S. De Winter, T. Maes, A geometric approach to Mathon maximal arcs. *J. Combin. Theory Ser. A* **118** (2011), 1196–1211. MR2755076 Zbl 1277.51011CrossrefGoogle Scholar

[12]

R. H. F. Denniston, Some maximal arcs in finite projective planes. *J. Combin. Theory Ser. A* **6** (1969), 317–319. MR0239991 Zbl 0167.49106CrossrefGoogle Scholar

[13]

M. Gezek, *Combinatorial Problems Related to Codes, Designs and Finite Geometries*. PhD thesis, Michigan Technological University, 2017.Google Scholar

[14]

M. Hall, Jr., Ovals in the Desarguesian plane of order 16. *Ann. Mat. Pura Appl*. (4) **102** (1975), 159–176. MR0358552 Zbl 0313.50013CrossrefGoogle Scholar

[15]

N. Hamilton, Some maximal arcs in derived dual Hall planes. *European J. Combin*. **15** (1994), 525–532. MR1302076 Zbl 0817.51006CrossrefGoogle Scholar

[16]

N. Hamilton, Maximal arcs in finite projective planes and associated in projective planes. PhD thesis, The University of Western Australia, 1995.Google Scholar

[17]

N. Hamilton, Some inherited maximal arcs in derived dual translation planes. *Geom. Dedicata* **55** (1995), 165–173. MR1334211 Zbl 0839.51010CrossrefGoogle Scholar

[18]

N. Hamilton, Some maximal arcs in Hall planes. *J. Geom*. **52** (1995), 101–107. MR1317259 Zbl 0820.51010CrossrefGoogle Scholar

[19]

N. Hamilton, R. Mathon, More maximal arcs in Desarguesian projective planes and their geometric structure. *Adv. Geom*. **3** (2003), 251–261. MR1997407 Zbl 1034.51004Google Scholar

[20]

N. Hamilton, R. Mathon, On the spectrum of non-Denniston maximal arcs in PG(2, 2^{h}). *European J. Combin*. **25** (2004), 415–421. MR2036477 Zbl 1074.51004CrossrefGoogle Scholar

[21]

N. Hamilton, S. D. Stoichev, V. D. Tonchev, Maximal arcs and disjoint maximal arcs in projective planes of order 16. *J. Geom*. **67** (2000), 117–126. MR1759716 Zbl 0981.51011CrossrefGoogle Scholar

[22]

J. W. P. Hirschfeld, *Projective geometries over finite fields*. Oxford Univ. Press 1998. MR1612570 Zbl 0899.51002Google Scholar

[23]

L. Lunelli, M. Sce, *k-archi completi nei piani proiettivi desarguesiani di rango* 8 *e* 16. Centro di Calcoli Numerici, Politecnico di Milano, Milan 1958. MR0157276Google Scholar

[24]

R. Mathon, New maximal arcs in Desarguesian planes. *J. Combin. Theory Ser. A* **97** (2002), 353–368. MR1883870 Zbl 1010.51009CrossrefGoogle Scholar

[25]

G. McGuire, V. D. Tonchev, H. N. Ward, Characterizing the Hermitian and Ree unitals on 28 points. *Des. Codes Cryptogr*. **13** (1998), 57–61. MR1600699 Zbl 0891.05014CrossrefGoogle Scholar

[26]

E. Moorhouse, Projective Planes of Order 16. http://ericmoorhouse.org/pub/planes16/

[27]

S. Niskanen, P. R. J. Östergård, *Cliquer User’s Guide*. Version 1.0. Tech. Rep. T48, Communications Laboratory, Helsinki University of Technology, Espoo, Finland, 2003.Google Scholar

[28]

T. Penttila, G. F. Royle, M. K. Simpson, Hyperovals in the known projective planes of order 16. *J. Combin. Des*. **4** (1996), 59–65. MR1364099 Zbl 0917.51008CrossrefGoogle Scholar

[29]

J. A. Thas, Construction of maximal arcs and partial geometries. *Geometriae Dedicata* **3** (1974), 61–64. MR0349437 Zbl 0285.50018Google Scholar

[30]

J. A. Thas, Construction of maximal arcs and dual ovals in translation planes. *European J. Combin*. **1** (1980), 189–192. MR587531 Zbl 0449.51011CrossrefGoogle Scholar

[31]

V. D. Tonchev, On resolvable Steiner 2-designs and maximal arcs in projective planes. *Des. Codes Cryptogr*. **84** (2017), 165–172. MR3654201 Zbl 1367.05019CrossrefGoogle Scholar

[32]

V. D. Tonchev, T. Wagner, Maximal (120, 8)-arcs in projective planes of order 16 and related designs. Preprint 22 February, 2017, arXiv:1702.06909 [math.CO]Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.