[1]

B. Ammann, C. Bär, The Dirac operator on nilmanifolds and collapsing circle bundles. *Ann. Global Anal. Geom*. **16** (1998), 221–253. MR1626659 Zbl 0911.58037CrossrefGoogle Scholar

[2]

C. Bär, The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces. *Arch. Math*. (*Basel*) **59** (1992), 65–79. MR1166019 Zbl 0786.53030CrossrefGoogle Scholar

[3]

A. Borel, F. Hirzebruch, Characteristic classes and homogeneous spaces. I. *Amer. J. Math*. **80** (1958), 458–538. MR0102800 Zbl 0097.36401CrossrefGoogle Scholar

[4]

M. Cahen, S. Gutt, Spin structures on compact simply connected Riemannian symmetric spaces. In: *Proceedings of the Workshop on Clifford Algebra, Clifford Analysis and their Applications in Mathematical Physics* (*Ghent*, 1988), volume 62, 209–242, 1988. MR976428 Zbl 0677.53057Google Scholar

[5]

P. M. Gadea, J. C. González-Dávila, J. A. Oubiña, Cyclic metric Lie groups. *Monatsh. Math*. **176** (2015), 219–239. MR3302156 Zbl 1321.53057CrossrefGoogle Scholar

[6]

P. M. Gadea, J. C. González-Dávila, J. A. Oubiña, Cyclic homogeneous Riemannian manifolds. *Ann. Mat. Pura Appl*. (4) **195** (2016), 1619–1637. MR3537965 Zbl 1361.53043CrossrefGoogle Scholar

[7]

J. C. González-Dávila, Harmonicity and minimality of distributions on Riemannian manifolds via the intrinsic torsion. *Rev. Mat. Iberoam*. **30** (2014), 247–275. MR3186939 Zbl 1292.58009CrossrefGoogle Scholar

[8]

S. Helgason, *Differential geometry, Lie groups, and symmetric spaces*, volume 80 of *Pure and Applied Mathematics*. Academic Press 1978. MR514561 Zbl 0451.53038Google Scholar

[9]

A. Ikeda, Formally self adjointness for the Dirac operator on homogeneous spaces. *Osaka J. Math*. **12** (1975), 173–185. MR0376962 Zbl 0317.58019Google Scholar

[10]

S. Kobayashi, K. Nomizu, *Foundations of differential geometry. Vol. II*. Interscience Publ. 1969. MR0238225 Zbl 0175.48504Google Scholar

[11]

H. B. Lawson, Jr., M.-L. Michelsohn, *Spin geometry*. Princeton Univ. Press 1989. MR1031992 Zbl 0688.57001Google Scholar

[12]

F. Tricerri, L. Vanhecke, *Homogeneous structures on Riemannian manifolds*. Cambridge Univ. Press 1983. MR712664 Zbl 0509.53043Google Scholar

[13]

J. A. Wolf, *Spaces of constant curvature*. AMS Chelsea Publishing, Providence, RI 2011. MR2742530 Zbl 1216.53003Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.