[1]

J. A. Aledo, L. J. Alías, A. Romero, Integral formulas for compact space-like hypersurfaces in de Sitter space: applications to the case of constant higher order mean curvature. *J. Geom. Phys*. **31** (1999), 195–208. MR1706636 Zbl 0969.53031CrossrefGoogle Scholar

[2]

L. J. Alías, A. Brasil, Jr., A. Gervasio Colares, Integral formulae for spacelike hypersurfaces in conformally stationary space-times and applications. *Proc. Edinb. Math. Soc. (2)* **46** (2003), 465–488. MR1998575 Zbl 1053.53038CrossrefGoogle Scholar

[3]

C. C. P. Aquino, H. F. de Lima, M. A. L. Velásquez, A new characterization of complete linear Weingarten hypersurfaces in real space forms. *Pacific J. Math*. **261** (2013), 33–43. MR3037557 Zbl 1273.53051CrossrefGoogle Scholar

[4]

C. C. P. Aquino, H. F. de Lima, M. A. L. Velásquez, Generalized maximum principles and the characterization of linear Weingarten hypersurfaces in space forms. *Michigan Math. J*. **63** (2014), 27–40. MR3189466 Zbl 1304.53051CrossrefGoogle Scholar

[5]

C. C. P. Aquino, H. F. de Lima, M. A. L. Velásquez, Linear Weingarten hypersurfaces with bounded mean curvature in the hyperbolic space. *Glasg. Math. J*. **57** (2015), 653–663. MR3395339 Zbl 1327.53075CrossrefGoogle Scholar

[6]

C. C. P. Aquino, H. F. de Lima, On the geometry of linear Weingarten hypersurfaces in the hyperbolic space. *Monatsh. Math*. **171** (2013), 259–268. MR3090789 Zbl 1279.53055CrossrefGoogle Scholar

[7]

J. A. L. M. Barbosa, A. G. Colares, Stability of hypersurfaces with constant *r*-mean curvature. *Ann. Global Anal. Geom*. **15** (1997), 277–297. MR1456513 Zbl 0891.53044CrossrefGoogle Scholar

[8]

A. Barros, J. Silva, P. Sousa, Rotational linear Weingarten surfaces into the Euclidean sphere. *Israel J. Math*. **192** (2012), 819–830. MR3009743 Zbl 1259.53050CrossrefGoogle Scholar

[9]

A. Caminha, On spacelike hypersurfaces of constant sectional curvature Lorentz manifolds. *J. Geom. Phys*. **56** (2006), 1144–1174. MR2234043 Zbl 1102.53044CrossrefGoogle Scholar

[10]

A. Caminha, The geometry of closed conformal vector fields on Riemannian spaces. *Bull. Braz. Math. Soc. (N.S.)* **42** (2011), 277–300. MR2833803 Zbl 1242.53068CrossrefGoogle Scholar

[11]

X. Chao, Y. Lv, On the Gauss map of Weingarten hypersurfaces in hyperbolic spaces. *Bull. Braz. Math. Soc. (N.S.)* **47** (2016), 1051–1069. MR3582027 Zbl 1369.53040CrossrefGoogle Scholar

[12]

H. Chen, X. Wang, Stability and eigenvalue estimates of linear Weingarten hypersurfaces in a sphere. *J. Math. Anal. Appl*. **397** (2013), 658–670. MR2979602 Zbl 1260.53112CrossrefGoogle Scholar

[13]

H. Li, Y. J. Suh, G. Wei, Linear Weingarten hypersurfaces in a unit sphere. *Bull. Korean Math. Soc*. **46** (2009), 321–329. MR2502796 Zbl 1165.53361CrossrefGoogle Scholar

[14]

S. Montiel, Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter spaces. *J. Math. Soc. Japan* **55** (2003), 915–938. MR2003752 Zbl 1049.53044CrossrefGoogle Scholar

[15]

R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms. *J. Differential Geometry* **8** (1973), 465–477. MR0341351 Zbl 0277.53030CrossrefGoogle Scholar

[16]

H. Rosenberg, Hypersurfaces of constant curvature in space forms. *Bull. Sci. Math*. **117** (1993), 211–239. MR1216008 Zbl 0787.53046Google Scholar

[17]

S. Shu, Linear Weingarten hypersurfaces in a real space form. *Glasg. Math. J*. **52** (2010), 635–648. MR2679920 Zbl 1203.53059CrossrefGoogle Scholar

[18]

M. A. Velásquez, A. F. de Sousa, H. F. de Lima, On the stability of hypersurfaces in space forms. *J. Math. Anal. Appl*. **406** (2013), 134–146. MR3062407 Zbl 1309.53050CrossrefGoogle Scholar

[19]

S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. *Indiana Univ. Math. J*. **25** (1976), 659–670. MR0417452 Zbl 0335.53041CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.