## Abstract

The present paper generalizes, inside the class of projective toric varieties, the classification [2], performed by Batyrev in 1991 for smooth complete toric varieties, to the singular ℚ-factorial case.

Show Summary Details# A Batyrev type classification of ℚ-factorial projective toric varieties

## Abstract

## References

## About the article

More options …# Advances in Geometry

More options …

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year

IMPACT FACTOR 2017: 0.734

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.695

Source Normalized Impact per Paper (SNIP) 2017: 0.891

Mathematical Citation Quotient (MCQ) 2017: 0.62

- Online
- ISSN
- 1615-7168

30,00 € / $42.00 / £23.00

Get Access to Full TextThe present paper generalizes, inside the class of projective toric varieties, the classification [2], performed by Batyrev in 1991 for smooth complete toric varieties, to the singular ℚ-factorial case.

Keywords: ℚ-factorial complete toric variety; projective toric bundle; secondary fan; Gale duality; fan and weight matrices; toric cover; splitting fan; primitive collection and relation

- [1]
V. Alexeev, R. Pardini, On the existence of ramified abelian covers.

*Rend. Semin. Mat. Univ. Politec. Torino***71**(2013), 307–315. MR3506389 Zbl 1327.14074Google Scholar - [2]
V. V. Batyrev, On the classification of smooth projective toric varieties.

*Tohoku Math. J*. (2)**43**(1991), 569–585. MR1133869 Zbl 0792.14026CrossrefGoogle Scholar - [3]
V. V. Batyrev, D. A. Cox, On the Hodge structure of projective hypersurfaces in toric varieties.

*Duke Math. J*.**75**(1994), 293–338. MR1290195 Zbl 0851.14021Google Scholar - [4]
F. Berchtold, J. Hausen, Bunches of cones in the divisor class group—a new combinatorial language for toric varieties.

*Int. Math. Res. Not*. no.**6**(2004), 261–302. MR2041065 Zbl 1137.14313Google Scholar - [5]
C. Casagrande, Contractible classes in toric varieties.

*Math. Z*.**243**(2003), 99–126. MR1953051 Zbl 1077.14070CrossrefGoogle Scholar - [6]
C. Casagrande, On the birational geometry of Fano 4-folds.

*Math. Ann*.**355**(2013), 585–628. MR3010140 Zbl 1260.14052CrossrefGoogle Scholar - [7]
H. Conrads, Weighted projective spaces and reflexive simplices.

*Manuscripta Math*.**107**(2002), 215–227. MR1894741 Zbl 1013.52009CrossrefGoogle Scholar - [8]
D. A. Cox, The homogeneous coordinate ring of a toric variety.

*J. Algebraic Geom*.**4**(1995), 17–50. MR1299003 Zbl 0846.14032Google Scholar - [9]
D. A. Cox, J. B. Little, H. K. Schenck,

*Toric varieties*, volume 124 of*Graduate Studies in Mathematics*. Amer. Math. Soc. 2011. MR2810322 Zbl 1223.14001Google Scholar - [10]
D. A. Cox, C. von Renesse, Primitive collections and toric varieties.

*Tohoku Math. J*. (2)**61**(2009), 309–332. MR2568257 Zbl 1185.14045CrossrefGoogle Scholar - [11]
O. Fujino, S. Payne, Smooth complete toric threefolds with no nontrivial nef line bundles.

*Proc. Japan Acad. Ser. A Math. Sci*.**81**(2005), 174–179 (2006). MR2196723 Zbl 1141.14313CrossrefGoogle Scholar - [12]
O. Fujino, H. Sato, Smooth projective toric varieties whose nontrivial nef line bundles are big.

*Proc. Japan Acad. Ser. A Math. Sci*.**85**(2009), 89–94. MR2548019 Zbl 1189.14056CrossrefGoogle Scholar - [13]
I. M. Gel’ fand, M. M. Kapranov, A. V. Zelevinsky,

*Discriminants, resultants, and multidimensional determinants*. Birkhäuser 1994. MR1264417 Zbl 0827.14036Google Scholar - [14]
I. M. Gel’ fand, A. V. Zelevinsky, M. M. Kapranov, Newton polyhedra of principal

*A*-determinants.*Dokl. Akad. Nauk SSSR***308**(1989), 20–23. MR1020882 Zbl 0742.14042Google Scholar - [15]
Y. Hu, S. Keel, Mori dream spaces and GIT.

*Michigan Math. J*.**48**(2000), 331–348. MR1786494 Zbl 1077.14554CrossrefGoogle Scholar - [16]
P. Kleinschmidt, A classification of toric varieties with few generators.

*Aequationes Math*.**35**(1988), 254–266. MR954243 Zbl 0664.14018CrossrefGoogle Scholar - [17]
P. Kleinschmidt, B. Sturmfels, Smooth toric varieties with small Picard number are projective.

*Topology***30**(1991), 289–299. MR1098923 Zbl 0739.14032CrossrefGoogle Scholar - [18]
T. Oda,

*Torus embeddings and applications*, volume 57 of*Tata Institute of Fundamental Research Lectures on Mathematics and Physics*. Springer 1978. MR546291 Zbl 0417.14043Google Scholar - [19]
T. Oda, H. S. Park, Linear Gale transforms and Gel’fand-Kapranov-Zelevinskij decompositions.

*Tohoku Math. J*. (2)**43**(1991), 375–399. MR1117211 Zbl 0782.52006CrossrefGoogle Scholar - [20]
M. Reid, Decomposition of toric morphisms. In:

*Arithmetic and geometry, Vol. II*, 395–418, Birkhäuser 1983. MR717617 Zbl 0571.14020Google Scholar - [21]
M. Rossi, L. Terracini, Linear algebra and toric data of weighted projective spaces.

*Rend. Semin. Mat. Univ. Politec. Torino***70**(2012), 469–495. MR3305560 Zbl 06382843Google Scholar - [22]
M. Rossi, L. Terracini, ℤ-linear Gale duality and poly weighted spaces (PWS).

*Linear Algebra Appl*.**495**(2016), 256–288. MR3462999 Zbl 1332.14065CrossrefGoogle Scholar - [23]
M. Rossi, L. Terracini, A ℚ-factorial complete toric variety is a quotient of a poly weighted space.

*Ann. Mat. Pura Appl*. (4)**196**(2017), 325–347. MR3600869 Zbl 06686404CrossrefGoogle Scholar - [24]
M. Rossi, L. Terracini, A ℚ-factorial complete toric variety of Picard number 2 is projective. To appear in

*J. Pure Appl. Algebra*. Preprint arXiv:1504.03850 [math.AG]Google Scholar - [25]
M. Rossi, L. Terracini, Fibration and classification of a smooth projective toric variety of low Picard number. To appear in

*Ann. Mat. Pura Appl*. Preprint arXiv:1507.00493 [math.AG]Google Scholar - [26]
M. Rossi, L. Terracini, Erratum to:

*A*ℚ*-factorial complete toric variety is a quotient of a poly weighted space*. Preprint arXiv:1502.00879v3 [math.AG]Google Scholar - [27]
H. Sato, Toward the classification of higher-dimensional toric Fano varieties.

*Tohoku Math. J*. (2)**52**(2000), 383–413. MR1772804 Zbl 1028.14015CrossrefGoogle Scholar

**Received**: 2016-04-27

**Revised**: 2017-09-05

**Published Online**: 2018-04-06

**Funding**: The authors were partially supported by the MIUR-PRIN 2010-11 Research Funds “Geometria delle Varietà Algebriche”. The first author is also supported by the I.N.D.A.M. as a member of the G.N.S.A.G.A.

**Citation Information: **Advances in Geometry, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2018-0007.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.