Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year


IMPACT FACTOR 2017: 0.734

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.695
Source Normalized Impact per Paper (SNIP) 2017: 0.891

Mathematical Citation Quotient (MCQ) 2017: 0.62

Online
ISSN
1615-7168
See all formats and pricing
More options …
Ahead of print

Issues

Blocking sets of certain line sets related to a hyperbolic quadric in PG(3, q)

Binod Kumar Sahoo
  • Corresponding author
  • School of Mathematical Sciences, National Institute of Science Education and Research, Bhubaneswar (HBNI), P.O. - Jatni, District - Khurda, Odisha - 752 050, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bikramaditya Sahu
  • School of Mathematical Sciences, National Institute of Science Education and Research, Bhubaneswar (HBNI), P.O. - Jatni, District - Khurda, Odisha - 752 050, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-20 | DOI: https://doi.org/10.1515/advgeom-2018-0009

Abstract

For a fixed hyperbolic quadric 𝓗 in PG(3, q), let 𝔼 (respectively 𝕋, 𝕊) denote the set of all lines of PG(3, q) which are external (respectively tangent, secant) with respect to 𝓗. We characterize the minimum size blocking sets of PG(3, q) with respect to each of the line sets 𝕊, 𝕋 ∪ 𝕊 and 𝔼 ∪ 𝕊.

Keywords: Projective space; blocking set; irreducible conic; hyperbolic quadric

MSC 2010: 05B25; 51E21

References

  • [1]

    A. Aguglia, M. Giulietti, Blocking sets of certain line sets related to a conic. Des. Codes Cryptogr. 39 (2006), 397–405. MR2216279 Zbl 1172.51305CrossrefGoogle Scholar

  • [2]

    A. Aguglia, G. Korchmáros, Blocking sets of nonsecant lines to a conic in PG(2, q), q odd. J. Combin. Des. 13 (2005), 292–301. MR2143981 Zbl 1078.51007CrossrefGoogle Scholar

  • [3]

    A. Aguglia, G. Korchmáros, Blocking sets of external lines to a conic in PG(2, q), q odd. Combinatorica 26 (2006), 379–394. MR2260844 Zbl 1111.51007CrossrefGoogle Scholar

  • [4]

    A. Aguglia, G. Korchmáros, A. Siciliano, Minimal covering of all chords of a conic in PG(2, q), q even. Bull. Belg. Math. Soc. Simon Stevin 12 (2005), 651–655. MR2241331 Zbl 1142.51006Google Scholar

  • [5]

    P. Biondi, P. M. Lo Re, On blocking sets of external lines to a hyperbolic quadric in PG(3, q), q even. J. Geom. 92 (2009), 23–27. Zbl 1170.51004CrossrefGoogle Scholar

  • [6]

    P. Biondi, P. M. Lo Re, L. Storme, On minimum size blocking sets of external lines to a quadric in PG(3, q). Beiträge Algebra Geom. 48 (2007), 209–215. MR2326410 Zbl 1121.51006Google Scholar

  • [7]

    E. Boros, Z. Füredi, J. Kahn, Maximal intersecting families and affine regular polygons in PG(2, q). J. Combin. Theory Ser. A 52 (1989), 1–9. MR1008155 Zbl 0737.05003CrossrefGoogle Scholar

  • [8]

    R. C. Bose, R. C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. J. Combin. Theory Ser. A 1 (1966), 96–104. MR0197215 Zbl 0152.18106CrossrefGoogle Scholar

  • [9]

    P. Erdős, L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions. North-Holland 1975. MR0382050 Zbl 0315.05117Google Scholar

  • [10]

    J. W. P. Hirschfeld, Finite projective spaces of three dimensions. Oxford Univ. Press 1985. MR840877 Zbl 0574.51001Google Scholar

  • [11]

    F. Mazzocca, Blocking sets with respect to special families of lines and nuclei of θn-sets in finite n-dimensional projective and affine spaces. In: Proceedings of the First International Conference on Blocking Sets (Giessen, 1989), Mitt. Math. Semin. Giessen 201 (1991), 109–117. MR1126310 Zbl 0741.51014Google Scholar

  • [12]

    G. E. Moorhouse, Incidence Geometry. Course notes 2017, available at http://ericmoorhouse.org/handouts/Incidence_Geometry.pdf

  • [13]

    K. L. Patra, B. K. Sahoo, B. Sahu, Minimum size blocking sets of certain line sets related to a conic in PG(2, q). Discrete Math. 339 (2016), 1716–1721. MR3477101 Zbl 1338.51009Web of ScienceCrossrefGoogle Scholar

  • [14]

    S. E. Payne, J. A. Thas, Finite generalized quadrangles. European Mathematical Society, Zürich 2009. MR2508121 Zbl 1247.05047Google Scholar

  • [15]

    B. K. Sahoo, B. Sahu, Blocking sets of tangent and external lines to a hyperbolic quadric in PG(3, q), q even. Proc. Indian Acad. Sci. Math. Sci., to appear.Google Scholar

  • [16]

    B. K. Sahoo, N. S. N. Sastry, Binary codes of the sympletic generalized quadrangle of even order. Des. Codes Cryptogr. 79 (2016), 163–170.CrossrefGoogle Scholar

  • [17]

    Z. Weiner, T. Szőnyi, On the stability of sets of even type. Adv. Math. 267 (2014), 381–394. MR3269183 Zbl 1337.51003Web of ScienceCrossrefGoogle Scholar

About the article


Received: 2016-08-06

Revised: 2017-11-12

Published Online: 2018-07-20


Funding: The first author was partially supported by SERB Project No. MTR/2017/000372, Department of Science and Technology, Government of India.


Citation Information: Advances in Geometry, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2018-0009.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Bart De Bruyn, Binod Kumar Sahoo, and Bikramaditya Sahu
Discrete Mathematics, 2018, Volume 341, Number 10, Page 2820

Comments (0)

Please log in or register to comment.
Log in