[1]

R. Bhatia, *Positive definite matrices*. Princeton Univ. Press 2007. MR2284176 Zbl 1125.15300Google Scholar

[2]

R. Bhatia, J. Holbrook, Riemannian geometry and matrix geometric means. *Linear Algebra Appl*. **413** (2006), 594–618. MR2198952 Zbl 1088.15022CrossrefGoogle Scholar

[3]

R. Bott, The stable homotopy of the classical groups. *Ann. of Math*. (2) **70** (1959), 313–337. MR0110104 Zbl 0129.15601CrossrefGoogle Scholar

[4]

T. Bröcker, T. Dieck, *Representations of compact Lie groups*. Springer 1985. MR781344 Zbl 0581.22009Google Scholar

[5]

A. Dolcetti, D. Pertici, Some differential properties of GL_{n}(ℝ) with the trace metric. *Riv. Math. Univ. Parma* (*N.S*.) **6** (2015), 267–286. MR3496672 Zbl 1345.53073Google Scholar

[6]

J. Gallier, D. Xu, Computing exponential of skew-symmetric matrices and logarithms of orthogonal matrices. *International Journal of Robotics and Automation* **17** (2002), 10–20.Google Scholar

[7]

B. Harris, Some calculations of homotopy groups of symmetric spaces. *Trans. Amer. Math. Soc*. **106** (1963), 174–184. MR0143216 Zbl 0117.16501CrossrefGoogle Scholar

[8]

N. J. Higham, *Functions of matrices*. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA 2008. MR2396439 Zbl 1167.15001Google Scholar

[9]

R. A. Horn, C. R. Johnson, *Matrix analysis*. Cambridge Univ. Press 2013. MR2978290 Zbl 1267.15001Google Scholar

[10]

S. Kobayashi, K. Nomizu, *Foundations of differential geometry. Vol I*. Interscience Publ. 1963. MR0152974 Zbl 0119.37502Google Scholar

[11]

S. Lang, *Fundamentals of differential geometry*. Springer 1999. MR1666820 Zbl 0932.53001Google Scholar

[12]

W. S. Massey, Obstructions to the existence of almost complex structures. *Bull. Amer. Math. Soc*. **67** (1961), 559–564. MR0133137 Zbl 0192.29601CrossrefGoogle Scholar

[13]

J. Milnor, Curvatures of left invariant metrics on Lie groups. *Advances in Math*. **21** (1976), 293–329. MR0425012 Zbl 0341.53030CrossrefGoogle Scholar

[14]

M. Moakher, M. Zéraï, The Riemannian geometry of the space of positive-definite matrices and its application to the regularization of positive-definite matrix-valued data. *J. Math. Imaging Vision* **40** (2011), 171–187. MR2782125 Zbl 1255.68195Web of ScienceCrossrefGoogle Scholar

[15]

B. O’Neill, *Semi-Riemannian geometry. With applications to relativity*. Academic Press 1983. Zbl 0531.53051Google Scholar

[16]

A. L. Onishchik, *Pfaffian*. Encyclopedia of Mathematics, Vol. 7. Kluver Academic Press Publishers, Dordrecht 1991.Google Scholar

[17]

G. Ottaviani, R. Paoletti, A geometric perspective on the singular value decomposition. *Rend. Istit. Mat. Univ. Trieste* **47** (2015), 107–125. MR3456581 Zbl 1345.15006Google Scholar

[18]

M. Pearl, On a theorem of M. Riesz. *J. Res. Nat. Bur. Standards* **62** (1959), 89–94. MR0103897 Zbl 0092.01502CrossrefGoogle Scholar

[19]

V. L. Popov, *Orbit*. Encyclopedia of Mathematics, Vol. 7, Kluver Academic Press Publishers, Dordrecht 1991.Google Scholar

[20]

M. R. Sepanski, *Compact Lie groups*. Springer 2007. MR2279709 Zbl 1246.22001Google Scholar

[21]

M. Spivak, *A comprehensive introduction to differential geometry. Vol. I*. Publish or Perish, Wilmington, Del. 1979. MR532830 Zbl 0439.53001Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.