[1]

M. Amram, M. Teicher, F. Ye, Moduli spaces of arrangements of 10 projective lines with quadruple points. *Adv. in Appl. Math.* **51** (2013), 392–418. MR3084506 Zbl 1283.14023Google Scholar

[2]

V. I. Arnol’d, The cohomology ring of the group of dyed braids. *Mat. Zametki* **5** (1969), 227–231. MR0242196 Zbl 0277.55002Google Scholar

[3]

E. Brieskorn, Sur les groupes de tresses [d’aprèes V. I. Arnol'd], volume 317 of *Lecture Notes in Math.*, 21–44, Springer 1973. MR0422674 Zbl 0277.55003Google Scholar

[4]

T. H. Brylawski, D. Lucas, Uniquely representable combinatorial geometries. In: *Teorie Combinatorie* (Proc. 1973 Internat. Colloq.), Accademia Nazionale dei Lincei, Roma, 1973, pp. 83–104. Zbl 0392.51007Google Scholar

[5]

G. Ch`ze, A. Galligo, Four lectures on polynomial absolute factorization. In: *Solving polynomial equations*, volume 14 of *Algorithms Comput. Math.*, 339–392, Springer 2005. MR2161993 Zbl 1152.13302Google Scholar

[6]

E. Delucchi, E. Saini, *Phasing spaces of matroids*. Preprint 2015. arXiv:1504.07109 [math.CO]Google Scholar

[7]

The Sage Developers, Sage Mathematics Software. 2015, www.sagemath.org.Google Scholar

[8]

M. Falk, R. Randell, On the homotopy theory of arrangements. II. In: Arrangements—Tokyo 1998, volume 27 of *Adv. Stud. Pure Math.*, 93–125, Kinokuniya, Tokyo 2000. MR1796895 Zbl 0990.32006Google Scholar

[9]

I. M. Gel'fand, R. M. Goresky, R. D. MacPherson, V. V. Serganova, Combinatorial geometries, convex polyhedra, and Schubert cells. *Adv. in Math.* **63** (1987), 301–316. MR877789 Zbl 0622.57014Google Scholar

[10]

T. Jiang, S. S.-T. Yau, Intersection lattices and topological structures of complements of arrangements in ℂP^{2}. *Ann. Scuola Norm. Sup. Pisa Cl. Sci*. (4) **26** (1998), 357–381. MR1631597 Zbl 0973.32015Google Scholar

[11]

Y. Matsumoto, S. Moriyama, H. Imai, D. Bremner, Matroid enumeration for incidence geometry. *Discrete Comput. Geom.* **47** (2012), 17–43. MR2886089 Zbl 1236.05055Google Scholar

[12]

J. Milnor, *Singular points of complex hypersurfaces*. Princeton Univ. Press 1968. MR0239612 Zbl 0184.48405Google Scholar

[13]

S. Nazir, M. Yoshinaga, On the connectivity of the realization spaces of line arrangements. *Ann. Sc. Norm. Super. Pisa Cl. Sci.* (5) **11** (2012), 921–937. MR3060685 Zbl 06142478Google Scholar

[14]

P. Orlik, L. Solomon, Combinatorics and topology of complements of hyperplanes. *Invent. Math.* **56** (1980), 167–189. MR558866 Zbl 0432.14016Google Scholar

[15]

P. Orlik, H. Terao, *Arrangements of hyperplanes*. Springer 1992. MR1217488 Zbl 0757.55001Google Scholar

[16]

J. G. Oxley, *Matroid theory*. Oxford Univ. Press 1992. MR1207587 Zbl 0784.05002Google Scholar

[17]

R. Randell, Lattice-isotopic arrangements are topologically isomorphic. *Proc. Amer. Math. Soc.* **107** (1989), 555–559. MR984812 Zbl 0681.57016Google Scholar

[18]

R. Randell, Milnor fibrations of lattice-isotopic arrangements. *Proc. Amer. Math. Soc.* **125** (1997), 3003–3009. MR1415364 Zbl 0902.52004Google Scholar

[19]

A. Ruiz, *Realization spaces of phased matroids*. PhD thesis, Binghamton University, State University of New York, 2013.Google Scholar

[20]

G. L. Rybnikov, On the fundamental group of the complement of a complex hyperplane arrangement. *Funct. Anal. Appl.* **45** (2011), 137–148; translation of *Funktsional. Anal. i Prilozhen.* **45** (2011), 71–85. MR2848779 Zbl 1271.14085Google Scholar

[21]

I. R. Shafarevich, *Basic algebraic geometry*. 2. Springer 2013. MR3100288 Zbl 1277.14002Google Scholar

[22]

S. Wang, S. S.-T. Yau, The diffeomorphic types of the complements of arrangements in CP_{3}. I. Point arrangements. *J. Math. Soc. Japan* **59** (2007), 423–447. MR2325692 Zbl 1140.14032Google Scholar

[23]

S. Wang, S. S.-T. Yau, The diffeomorphic types of the complements of arrangements in CP_{3}. II. *Sci. China Ser. A* **51** (2008), 785–802. MR2395423 Zbl 1192.14042Google Scholar

[24]

S. S.-T. Yau, F. Ye, Diffeomorphic types of complements of nice point arrangements in CP_{1}. *Sci. China Ser. A* **52** (2009), 2774–2791. MR2577190 Zbl 1197.14015Google Scholar

[25]

F. Ye, Classification of moduli spaces of arrangements of nine projective lines. *Pacific J. Math.* **265** (2013), 243–256. MR3095122 Zbl 1278.14068Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.