Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year

IMPACT FACTOR 2017: 0.734

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.695
Source Normalized Impact per Paper (SNIP) 2017: 0.891

Mathematical Citation Quotient (MCQ) 2017: 0.62

See all formats and pricing
More options …
Ahead of print


Weierstrass points on Kummer extensions

Miriam Abdón
  • Corresponding author
  • IME, Univ. Federal Fluminense, Rua M√°rio Santos Braga s/n, CEP 24020-140, Niter√≥i, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Herivelto Borges
  • Instituto de Ci√™ncias Matem√°ticas e de Computa√ß√£o, Universidade de S√£o Paulo, Av. Trabalhador S√£o Carlense, CEP 13560-970, S√£o Carlos, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luciane Quoos
  • Instituto de Matem√°tica, Universidade Federal do Rio de Janeiro, Cidade Universit√°ria, CEP 21941-909, Rio de Janeiro, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-20 | DOI: https://doi.org/10.1515/advgeom-2018-0021


For Kummer extensions given by ym = f(x), we discuss conditions for an integer to be a Weierstrass gap at a place P. In the case of fully ramified places, the conditions are necessary and sufficient. As a consequence, we extend independent results of several authors. Moreover, we show that if the Kummer extension is ūĚĒĹq2-maximal and f(x) ‚ąą ūĚĒĹq2[x] has at least two roots with the same multiplicity őĽ coprime to m, then m divides 2(q + 1). Under the extra condition that either m or the multiplicity of a third root of f(x) is odd, we conclude that m divides q + 1.

Keywords: Weierstrass points; maximal curves; Kummer extensions

MSC 2010: 14H55; 11R58; 14Hxx


  • [1]

    C. Carvalho, F. Torres, On Goppa codes and Weierstrass gaps at several points. Des. Codes Cryptogr. 35 (2005), 211‚Äď225. MR2134388 Zbl 1070.94029CrossrefGoogle¬†Scholar

  • [2]

    A. Del Centina, Weierstrass points and their impact in the study of algebraic curves: a historical account from the ‚ÄúL√ľckensatz‚ÄĚ to the 1970s. Ann. Univ. Ferrara Sez. VII Sci. Mat. 54 (2008), 37‚Äď59. MR2403373 Zbl 1179.14001CrossrefGoogle¬†Scholar

  • [3]

    A. Garc√≠ a, On Weierstrass points on certain elementary abelian extensions of k(x). Comm. Algebra 17 (1989), 3025‚Äď3032. MR1030607 Zbl 0744.14025CrossrefGoogle¬†Scholar

  • [4]

    A. Garcia, S. Tafazolian, Certain maximal curves and Cartier operators. Acta Arith. 135 (2008), 199‚Äď218. MR2457195 Zbl 1166.11019CrossrefWeb¬†of¬†ScienceGoogle¬†Scholar

  • [5]

    A. Garcia, S. Tafazolian, On additive polynomials and certain maximal curves. J. Pure Appl. Algebra 212 (2008), 2513‚Äď2521. MR2440263 Zbl 1186.11034CrossrefWeb¬†of¬†ScienceGoogle¬†Scholar

  • [6]

    O. Geil, R. Matsumoto, Bounding the number of ūĚĒĹq-rational places in algebraic function fields using Weierstrass semigroups. J. Pure Appl. Algebra 213 (2009), 1152‚Äď1156. MR2498805 Zbl 1180.14018CrossrefWeb¬†of¬†ScienceGoogle¬†Scholar

  • [7]

    H. Hasse, √úber den algebraischen Funktionenk√∂rper der Fermatschen Gleichung. Acta Univ. Szeged. Sect. Sci. Math. 13 (1950), 195‚Äď207. MR0039008 Zbl 0039.03201Google¬†Scholar

  • [8]

    J. W. P. Hirschfeld, Projective geometries over finite fields. Oxford Univ. Press 1998. MR1612570 Zbl 0899.51002Google Scholar

  • [9]

    A. Hurwitz, Ueber algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41 (1893), 403‚Äď442. JFM 24.0380.02Google¬†Scholar

  • [10]

    G. Lachaud, Sommes ńŹEisenstein et nombre de points de certaines courbes alg√©briques sur les corps finis. C. R. Acad. Sci. Paris S√©r. I Math. 305 (1987), 729‚Äď732. MR920053 Zbl 0639.14013Google¬†Scholar

  • [11]

    H.-W. Leopoldt, √úber die Automorphismengruppe des Fermatk√∂rpers. J. Number Theory 56 (1996), 256‚Äď282. MR1373551 Zbl 0854.11062CrossrefGoogle¬†Scholar

  • [12]

    J. Lewittes, Automorphisms of compact Riemann surfaces. Amer. J. Math. 85 (1963), 734‚Äď752. MR0160893 Zbl 0146.10403CrossrefGoogle¬†Scholar

  • [13]

    J. Lewittes, Places of degree one in function fields over finite fields. J. Pure Appl. Algebra 69 (1990), 177‚Äď183. MR1086559 Zbl 0723.11061CrossrefGoogle¬†Scholar

  • [14]

    R. Lidl, H. Niederreiter, Finite fields, volume 20 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 1997. MR1429394 Zbl 0866.11069Google Scholar

  • [15]

    H. Maharaj, Code construction on fiber products of Kummer covers. IEEE Trans. Inform. Theory 50 (2004), 2169‚Äď2173. MR2097204 Zbl 1315.94138CrossrefGoogle¬†Scholar

  • [16]

    G. L. Matthews, Weierstrass pairs and minimum distance of Goppa codes. Des. Codes Cryptogr. 22 (2001), 107‚Äď121. MR1813780 Zbl 0989.94032CrossrefGoogle¬†Scholar

  • [17]

    C. Moreno, Algebraic curves over finite fields, volume 97 of Cambridge Tracts in Mathematics. Cambridge Univ. Press 1991. MR1101140 Zbl 0733.14025Google Scholar

  • [18]

    H.-G. R√ľck, H. Stichtenoth, A characterization of Hermitian function fields over finite fields. J. Reine Angew. Math. 457 (1994), 185‚Äď188. MR1305281 Zbl 0802.11053Google¬†Scholar

  • [19]

    F. K. Schmidt, Zur arithmetischen Theorie der algebraischen Funktionen. II. Allgemeine Theorie der Weierstra√üpunkte. Math. Z. 45 (1939), 75‚Äď96. MR1545805 Zbl 0020.10202CrossrefGoogle¬†Scholar

  • [20]

    H. Stichtenoth, Algebraic function fields and codes. Springer 1993. MR1251961 Zbl 0816.14011Google Scholar

  • [21]

    K.-O. St√∂hr, J. F. Voloch, Weierstrass points and curves over finite fields. Proc. London Math. Soc. (3) 52 (1986), 1‚Äď19. MR812443 Zbl 0593.14020Google¬†Scholar

  • [22]

    S. Tafazolian, A characterization of maximal and minimal Fermat curves. Finite Fields Appl. 16 (2010), 1‚Äď3. MR2588121 Zbl 1221.11144CrossrefWeb¬†of¬†ScienceGoogle¬†Scholar

  • [23]

    S. Tafazolian, A family of maximal hyperelliptic curves. J. Pure Appl. Algebra 216 (2012), 1528‚Äď1532. MR2899820 Zbl 1276.11105Web¬†of¬†ScienceCrossrefGoogle¬†Scholar

  • [24]

    S. Tafazolian, F. Torres, On maximal curves of Fermat type. Adv. Geom. 13 (2013), 613‚Äď617. MR3181538 Zbl 06229235Web¬†of¬†ScienceGoogle¬†Scholar

  • [25]

    S. Tafazolian, F. Torres, On the curve yn = xm + x over finite fields. J. Number Theory 145 (2014), 51‚Äď66. MR3253292 Zbl 06343973Web¬†of¬†ScienceCrossrefGoogle¬†Scholar

  • [26]

    C. Towse, Weierstrass points on cyclic covers of the projective line. Trans. Amer. Math. Soc. 348 (1996), 3355‚Äď3378. MR1357406 Zbl 0877.14025CrossrefGoogle¬†Scholar

  • [27]

    R. C. Valentini, M. L. Madan, Weierstrass points in characteristic p. Math. Ann. 247 (1980), 123‚Äď132. MR568202 Zbl 0408.14008CrossrefGoogle¬†Scholar

About the article

Received: 2017-02-09

Revised: 2017-07-10

Published Online: 2018-07-20

Funding: The second author was partially supported by FAPESP-Brazil grant 2017/04681-3.

Citation Information: Advances in Geometry, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2018-0021.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the ‚ÄúCitation Alert‚ÄĚ on the top of this page.

Daniele Bartoli, Ariane M. Masuda, Maria Montanucci, and Luciane Quoos
Finite Fields and Their Applications, 2018, Volume 53, Page 287

Comments (0)

Please log in or register to comment.
Log in