[1]

A. Abolarinwa, Evolution and monotonicity of the first eigenvalue of *p*-Laplacian under the Ricci-harmonic flow. *J. Appl. Anal.* 21 (2015), 147–160. MR3430912 Zbl 1329.53052Google Scholar

[2]

A. Abolarinwa, J. Mao, The first eigenvalue of the *p*-Laplacian on time dependent Riemannian metrics. Preprint 2016, arXiv:1605.01882 [math.DG]Google Scholar

[3]

D. Bakry, M. Émery, Diffusions hypercontractives. In: *Séminaire de probabilités, XIX,* 1983/84, volume 1123 of *Lecture* *Notes in Math.*, 177–206, Springer 1985. MR889476 Zbl 0561.60080Google Scholar

[4]

M. Băileşteanu, H. Tran, Heat kernel estimates under the Ricci-harmonic map flow. *Proc. Edinb. Math. Soc.* (2) 60 (2017), 831–857. MR3715688Google Scholar

[5]

X. Cao, Eigenvalues of $(-\Delta +\frac{R}{2})$ on manifolds with nonnegative curvature operator. *Math. Ann.* 337 (2007), 435–441. MR2262792 Zbl 1105.53051Google Scholar

[6]

X. Cao, First eigenvalues of geometric operators under the Ricci flow. *Proc. Amer. Math. Soc.* 136 (2008), 4075–4078. MR2425749 Zbl 1166.58007Google Scholar

[7]

X. Cao, S. Hou, J. Ling, Estimate and monotonicity of the first eigenvalue under the Ricci flow. *Math. Ann.* 354 (2012), 451–463. MR2965250 Zbl 1252.53075Google Scholar

[8]

X. Cheng, D. Zhou, Eigenvalues of the drifted Laplacian on complete metric measure spaces. *Commun. Contemp. Math.* 19 (2017), 1650001, 17. MR3575913 Zbl 1360.58022Google Scholar

[9]

B. Chow, D. Knopf, *The Ricci flow: an introduction*, volume 110 of *Mathematical Surveys and Monographs*. Amer. Math. Soc. 2004. MR2061425 Zbl 1086.53085Google Scholar

[10]

S. Fang, H. Xu, P. Zhu, Evolution and monotonicity of eigenvalues under the Ricci flow. *Sci. China Math.* 58 (2015), 1737–1744. MR3368179 Zbl 1327.53084Google Scholar

[11]

A. Futaki, H. Li, X.-D. Li, On the first eigenvalue of the Witten-Laplacian and the diameter of compact shrinking solitons. *Ann. Global Anal. Geom.* 44 (2013), 105–114. MR3073582 Zbl 1273.58018Google Scholar

[12]

A. Grigor’yan, *Heat kernel and analysis on manifolds*, volume 47 of *AMS/IP Studies in Advanced Mathematics*. Amer. Math. Soc. 2009. MR2569498 Zbl 1206.58008Google Scholar

[13]

H. Guo, R. Philipowski, A. Thalmaier, Entropy and lowest eigenvalue on evolving manifolds. *Pacific J. Math.* 264 (2013), 61–81. MR3079761 Zbl 1275.53058Google Scholar

[14]

H. X. Guo, R. Philipowski, A. Thalmaier, On gradient solitons of the Ricci-harmonic flow. *Acta Math. Sin.* (*Engl. Ser.*) 31 (2015), 1798–1804. MR3406677 Zbl 1330.53085Google Scholar

[15]

R. S. Hamilton, Three-manifolds with positive Ricci curvature. *J. Differential Geom.* 17 (1982), 255–306. MR664497 Zbl 0504.53034Google Scholar

[16]

G. Huang, Z. Li, Monotonicity formulas of eigenvalues and energy functionals along the rescaled List’s extended Ricci flow. Preprint 2015, arXiv:1511.08529v1 [math.DG]Google Scholar

[17]

J.-F. Li, Eigenvalues and energy functionals with monotonicity formulae under Ricci flow. *Math. Ann.* 338 (2007), 927–946. MR2317755 Zbl 1127.53059Google Scholar

[18]

J.-F. Li, Monotonicity formulae under rescaled Ricci flow. Preprint 2007, arXiv:math/07010.5328 [math.DG]Google Scholar

[19]

Y. Li, Eigenvalues and entropies under the harmonic-Ricci flow. *Pacific J. Math.* 267 (2014), 141–184. MR3163480 Zbl 1312.53088Google Scholar

[20]

Y. Li, Long time existence and bounded scalar curvature in Ricci-harmonic flow. Preprint 2015, arXiv 1510.05788v2 [math.DG]Google Scholar

[21]

J. Ling, A class of monotone quantities along the Ricci flow. Preprint 2007, arXiv:0710.4291Google Scholar

[22]

B. List, Evolution of an extended Ricci flow system. *Comm. Anal. Geom.* 16 (2008), 1007–1048. MR2471366 Zbl 1166.53044Google Scholar

[23]

L. Ma, Eigenvalue monotonicity for the Ricci–Hamilton flow. *Ann. Global Anal. Geom.* 29 (2006), 287–292. MR2248073 Zbl 1099.53046Google Scholar

[24]

L. Ma, Eigenvalue estimates and *L*^{1} energy on closed manifolds. *Acta Math. Sin.* (*Engl. Ser.*) 30 (2014), 1729–1734. MR3255784 Zbl 1304.58017Google Scholar

[25]

R. Müller, Ricci flow coupled with harmonic map flow. *Ann. Sci. Éc. Norm. Supér.* (4) 45 (2012), 101–142. MR2961788 Zbl 1247.53082Google Scholar

[26]

T. Oliynyk, V. Suneeta, E. Woolgar, A gradient flow for worldsheet nonlinear sigma models. *Nuclear Phys. B* 739 (2006), 441–458. MR2214659 Zbl 1109.81058Google Scholar

[27]

G. Perelman, The entropy formula for the Ricci flow and its geometric application. Preprint 2002, arXiv:0211159v1 [math.DG]Google Scholar

[28]

H. Tadano, Gap theorems for Ricci-harmonic solitons. *Ann. Global Anal. Geom.* 49 (2016), 165–175. MR3464218 Zbl 1335.53090Google Scholar

[29]

H. Tran, Harnack estimates for Ricci flow on a warped product. *J. Geom. Anal.* 26 (2016), 1838–1862. MR3511460 Zbl 1343.53068Google Scholar

[30]

M. B. Williams, Results on coupled Ricci and harmonic map flows. *Adv. Geom.* 15 (2015), 7–26. MR3300708 Zbl 1310.53043Google Scholar

[31]

L. Zhao, Eigenvalues of the Laplacian operator under mean curvature flow. *Chinese Ann. Math. Ser. A* 30 (2009), 539–544. MR2582093 Zbl 1212.53095Google Scholar

[32]

L. Zhao, The first eigenvalue of *p*-Laplace operator under powers of the *m*th mean curvature flow. *Results Math.* 63 (2013), 937–948. MR3057347 Zbl 1270.53089Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.