Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard


IMPACT FACTOR 2018: 0.789

CiteScore 2018: 0.73

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.908

Mathematical Citation Quotient (MCQ) 2018: 0.53

Online
ISSN
1615-7168
See all formats and pricing
More options …
Ahead of print

Issues

Rational quartic symmetroids

Martin Helsø
Published Online: 2019-09-11 | DOI: https://doi.org/10.1515/advgeom-2018-0037

Abstract

We classify rational, irreducible quartic symmetroids in projective 3-space. They are either singular along a line or a smooth conic section, or they have a triple point or a tacnode.

Keywords: Rational surfaces; determinantal varieties; linear systems of quadrics

MSC 2010: Rational surfaces; determinantal varieties; linear systems of quadrics

References

  • [1]

    G. Blekherman, J. Hauenstein, J. C. Ottem, K. Ranestad, B. Sturmfels, Algebraic boundaries of Hilbert’s SOS cones. Compos. Math. 148 (2012), 1717–1735. MR2999301 Zbl 1273.13043CrossrefWeb of ScienceGoogle Scholar

  • [2]

    P. Cayley, A Memoir on Quartic Surfaces. Proc. Lond. Math. Soc. 3 (1869/71), 19–69. MR1577187 JFM 03.0390.01Google Scholar

  • [3]

    A. Degtyarev, I. Itenberg, On real determinantal quartics. In: Proceedings of the Gökova Geometry-Topology Conference 2010, 110–128, Int. Press, Somerville, MA 2011. MR2931883 Zbl 1248.14063Google Scholar

  • [4]

    I. V. Dolgachev, Classical algebraic geometry. Cambridge Univ. Press 2012. MR2964027 Zbl 1252.14001Google Scholar

  • [5]

    J. Harris, Algebraic geometry. Springer 1992. MR1182558 Zbl 0779.14001Google Scholar

  • [6]

    A. Iliev, G. Kapustka, M. Kapustka, K. Ranestad, Hyper-Kähler fourfolds and Kummer surfaces. Proc. Lond. Math. Soc. (3) 115 (2017), 1276–1316. MR3741852 Zbl 06827297CrossrefGoogle Scholar

  • [7]

    C. M. Jessop, Quartic surfaces with singular points. University Press 1916. Zbl 1332.14005Google Scholar

  • [8]

    N. Kasuya, On the links of simple singularities, simple elliptic singularities and cusp singularities. Demonstr. Math. 48 (2015), 289–312. MR3353560 Zbl 1322.32021Web of ScienceGoogle Scholar

  • [9]

    H. B. Laufer, On minimally elliptic singularities. Amer. J. Math. 99 (1977), 1257–1295. MR0568898 Zbl 0384.32003CrossrefGoogle Scholar

  • [10]

    M. Noether, Ueber die rationalen Flächen vierter Ordnung. Math. Ann. 33 (1889), 546–571. MR1510560 JFM 21.0827.02CrossrefGoogle Scholar

  • [11]

    J. C. Ottem, K. Ranestad, B. Sturmfels, C. Vinzant, Quartic spectrahedra. Math. Program. 151 (2015), 585–612. MR3348164 Zbl 1328.14091Web of ScienceCrossrefGoogle Scholar

  • [12]

    K. Saito, Einfach-elliptische Singularitäten. Invent. Math. 23 (1974), 289–325. MR0354669 Zbl 0296.14019CrossrefGoogle Scholar

  • [13]

    T. Urabe, On quartic surfaces and sextic curves with certain singularities. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), 434–437. MR732604 Zbl 0549.14013CrossrefGoogle Scholar

  • [14]

    T. Urabe, On singularities on degenerate del Pezzo surfaces of degree 1, 2. In: Singularities, Part 2 (Arcata, Calif., 1981), volume 40 of Proc. Sympos. Pure Math., 587–591, Amer. Math. Soc. 1983. MR713283 Zbl 0515.14021Google Scholar

  • [15]

    T. Urabe, On quartic surfaces and sextic curves with singularities of type 8, T2,3,7, E12. Publ. Res. Inst. Math. Sci. 20 (1984), 1185–1245. MR775127 Zbl 0601.14031CrossrefGoogle Scholar

  • [16]

    C. T. C. Wall, Singularities of nets of quadrics. Compositio Math. 42 (1980/81), 187–212. MR596875 Zbl 0423.14002Google Scholar

About the article

Received: 2017-10-02

Revised: 2018-03-05

Published Online: 2019-09-11


Communicated by: I. Coskun


Citation Information: Advances in Geometry, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2018-0037.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in