[1]

M. Abdón, F. Torres, On 𝔽_{q2}-maximal curves of genus $\begin{array}{}\frac{1}{6}\end{array}$(*q* − 3)*q*. *Beiträge Algebra Geom*. **46** (2005), 241–260.MR2146454 Zbl 1073.11043Google Scholar

[2]

W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. *J. Symbolic Comput*. **24** (1997), 235–265. MR1484478 Zbl 0898.68039CrossrefGoogle Scholar

[3]

A. Eid, I. Duursma, Smooth embeddings for the Suzuki and Ree curves. In: *Algorithmic arithmetic, geometry, and coding theory*, volume 637 of *Contemp. Math*., 251–291, Amer. Math. Soc. 2015. MR3364452 Zbl 06592385Google Scholar

[4]

S. Fanali, M. Giulietti, On maximal curves with Frobenius dimension 3. *Des. Codes Cryptogr*. **53** (2009), 165–174. MR2545690 Zbl 1185.11042CrossrefGoogle Scholar

[5]

S. Fanali, M. Giulietti, On some open problems on maximal curves. *Des. Codes Cryptogr*. **56** (2010), 131–139. MR2658926 Zbl 1273.11098CrossrefGoogle Scholar

[6]

R. Fuhrmann, A. Garcia, F. Torres, On maximal curves. *J. Number Theory* **67** (1997), 29–51. MR1485426 Zbl 0914.11036Web of ScienceCrossrefGoogle Scholar

[7]

R. Fuhrmann, F. Torres, On Weierstrass points and optimal curves. *Rend. Circ. Mat. Palermo (2) Suppl*. no. **51** (1998), 25–46. MR1631013 Zbl 1049.11062Google Scholar

[8]

A. García, M. Homma, Frobenius order-sequences of curves. In: *Algebra and number theory (Essen, 1992)*, 27–41, de Gruyter 1994. MR1285362 Zbl 0824.14019Google Scholar

[9]

J. P. Hansen, J. P. Pedersen, Automorphism groups of Ree type, Deligne-Lusztig curves and function fields. *J. Reine Angew. Math*. **440** (1993), 99–109. MR1225959 Zbl 0769.14009Google Scholar

[10]

J. W. P. Hirschfeld, G. Korchmáros, F. Torres, *Algebraic curves over a finite field*. Princeton Univ. Press 2008. MR2386879 Zbl 1200.11042Google Scholar

[11]

D. M. Kane, Canonical projective embeddings of the Deligne-Lusztig curves associated to ^{2}*A*_{2}, ^{2}*B*_{2}, and ^{2}*G*_{2}. *Int. Math. Res. Not*. **2016**, no. 4, 1158–1189. MR3493445 Zbl 1379.14025Google Scholar

[12]

J. P. Pedersen, A function field related to the Ree group. In: *Coding theory and algebraic geometry (Luminy, 1991)*, volume 1518 of *Lecture Notes in Math*., 122–131, Springer 1992. MR1186420 Zbl 0806.11055Google Scholar

[13]

H.-G. Rück, H. Stichtenoth, A characterization of Hermitian function fields over finite fields. *J. Reine Angew. Math*. **457** (1994), 185–188. MR1305281 Zbl 0802.11053Google Scholar

[14]

F. K. Schmidt, Zur arithmetischen Theorie der algebraischen Funktionen. II. Allgemeine Theorie der Weierstraß punkte. *Math. Z*. **45** (1939), 75–96. MR1545805 Zbl 0020.10202CrossrefGoogle Scholar

[15]

D. C. Skabelund, New maximal curves as ray class fields over Deligne-Lusztig curves. *Proc. Amer. Math. Soc*. **146** (2018), 525–540. MR3731688 Zbl 06816403Web of ScienceGoogle Scholar

[16]

K.-O. Stöhr, J. F. Voloch, Weierstrass points and curves over finite fields. *Proc. London Math. Soc. (3)* **52** (1986), 1–19. MR812443 Zbl 0593.14020Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.