[1]

D. V. Alekseevskiĭ, Compact quaternion spaces. (Russian) *Funkcional. Anal. i Priložen* **2** (1968), 11–20. English translation: *Functional Analysis Appl*. **2** (1968), 106–114. MR0231314 Zbl 0175.19001Google Scholar

[2]

J. Berndt, Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians. *Monatsh. Math*. **127** (1999), 1–14. MR1666307 Zbl 0920.53016CrossrefGoogle Scholar

[3]

J. Berndt, Y. J. Suh, Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians. *Monatsh. Math*. **137** (2002), 87–98. MR1937621 Zbl 1015.53034CrossrefGoogle Scholar

[4]

J. T. Cho, CR structures on real hypersurfaces of a complex space form. *Publ. Math. Debrecen* **54** (1999), 473–487. MR1694456 Zbl 0929.53029Google Scholar

[5]

J. de Dios Pérez, I. Jeong, Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator. *Acta Math. Hungar*. **117** (2007), 201–217. MR2361601 Zbl 1220.53070CrossrefGoogle Scholar

[6]

J. de Dios Pérez, Y. J. Suh, Real hypersurfaces of quaternionic projective space satisfying ∇_{Ui} *R* = 0. *Differential Geom. Appl*. **7** (1997), 211–217. MR1480534 Zbl 0901.53011CrossrefGoogle Scholar

[7]

I. Jeong, H. J. Kim, Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator. *Publ. Math. Debrecen* **76** (2010), 203–218. MR2598182 Zbl 1274.53080Google Scholar

[8]

I. Jeong, Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with 𝔉-parallel normal Jacobi operator. *Kyungpook Math. J*. **51** (2011), 395–410. MR2874974 Zbl 1243.53099CrossrefGoogle Scholar

[9]

U.-H. Ki, J. de Dios Pérez, F. G. Santos, Y. J. Suh, Real hypersurfaces in complex space forms with *ξ*-parallel Ricci tensor and structure Jacobi operator. *J. Korean Math. Soc*. **44** (2007), 307–326. MR2295391 Zbl 1144.53069CrossrefWeb of ScienceGoogle Scholar

[10]

M. Kon, Real hypersurfaces in complex space forms and the generalized Tanaka-Webster connection. In: *Proceedings of the 13th International Workshop on Differential Geometry and Related Fields*, 145–159, Natl. Inst. Math. Sci., Taejŏn 2009. MR2641131 Zbl 1185.53058Google Scholar

[11]

H. Lee, Y. J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians related to the Reeb vector. *Bull. Korean Math. Soc*. **47** (2010), 551–561. MR2666376 Zbl 1206.53064Web of ScienceCrossrefGoogle Scholar

[12]

E. Pak, J. de Dios Pérez, C. J. G. Machado, C. Woo, Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel normal Jacobi operator. *Czechoslovak Math. J*. **65 (140)** (2015), 207–218. MR3336034 Zbl 1363.53049Web of ScienceGoogle Scholar

[13]

N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. *Japan. J. Math. (N.S.)* **2** (1976), 131–190. MR0589931 Zbl 0346.32010CrossrefGoogle Scholar

[14]

S. Tanno, Variational problems on contact Riemannian manifolds. *Trans. Amer. Math. Soc*. **314** (1989), 349–379. MR1000553 Zbl 0677.53043CrossrefGoogle Scholar

[15]

S. M. Webster, Pseudo-Hermitian structures on a real hypersurface. *J. Differential Geom*. **13** (1978), 25–41. MR520599 Zbl 0379.53016CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.