[1]

R. Achilles, M. Manaresi, P. Schenzel, A degree formula for secant varieties of curves. *Proc. Edinb. Math. Soc*. (2) **57** (2014), 305–322. MR3200310 Zbl 1300.14032CrossrefWeb of ScienceGoogle Scholar

[2]

J. Alexander, A. Hirschowitz, Polynomial interpolation in several variables. *J. Algebraic Geom*. **4** (1995), 201–222. MR1311347 Zbl 0829.14002Google Scholar

[3]

W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, *Compact complex surfaces*. Springer 2004. MR2030225 Zbl 1036.14016Google Scholar

[4]

A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle. *J. Differential Geom*. **18** (1983), 755–782 (1984). MR730926 Zbl 0537.53056CrossrefGoogle Scholar

[5]

M. Beltrametti, P. Francia, A. J. Sommese, On Reider’s method and higher order embeddings. *Duke Math. J*. **58** (1989), 425–439. MR1016428 Zbl 0702.14010CrossrefGoogle Scholar

[6]

M. Beltrametti, A. J. Sommese, On *k*-spannedness for projective surfaces. In: *Algebraic geometry* (*L’Aquila*, 1988), volume 1417 of *Lecture Notes in Math*., 24–51, Springer 1990. MR1040549 Zbl 0706.14007Google Scholar

[7]

M. C. Beltrametti, A. J. Sommese, On the preservation of *k*-very ampleness under adjunction. *Math. Z*. **212** (1993), 257–283. MR1202811 Zbl 0806.14015CrossrefGoogle Scholar

[8]

M. C. Beltrametti, A. J. Sommese, *The adjunction theory of complex projective varieties*, volume 16 of *De Gruyter Expositions in Mathematics*. De Gruyter 1995. MR1318687 Zbl 0845.14003Google Scholar

[9]

A. Bertram, I. Coskun, The birational geometry of the Hilbert scheme of points on surfaces. In: *Birational geometry, rational curves, and arithmetic*, 15–55, Springer 2013. MR3114922 Zbl 1273.14032Google Scholar

[10]

S. Boissière, A. Cattaneo, M. Nieper-Wisskirchen, A. Sarti, The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface. In: *K*3 *surfaces and their moduli*, 1–15, Springer 2016. MR3524162 Zbl 1375.14015Google Scholar

[11]

F. Catanese, On Severi’s proof of the double point formula. *Comm. Algebra* **7** (1979), 763–773. MR529319 Zbl 0411.14016CrossrefGoogle Scholar

[12]

F. Catanese, L. Gœ ttsche, *d*-very-ample line bundles and embeddings of Hilbert schemes of 0-cycles. *Manuscripta Math*. **68** (1990), 337–341. MR1065935 Zbl 0729.14006CrossrefGoogle Scholar

[13]

M. Dale, Terracini’s lemma and the secant variety of a curve. *Proc. London Math. Soc*. (3) **49** (1984), 329–339. MR748993 Zbl 0571.14025Google Scholar

[14]

W. Fulton, *Intersection theory*. Springer 1998. MR1644323 Zbl 0885.14002Google Scholar

[15]

P. Griffiths, J. Harris, *Principles of algebraic geometry*. Wiley-Interscience 1978. MR507725 Zbl 0408.14001Google Scholar

[16]

P. Griffiths, J. Harris, Algebraic geometry and local differential geometry. *Ann. Sci. École Norm. Sup*. (4) **12** (1979), 355–452. MR559347 Zbl 0426.14019CrossrefGoogle Scholar

[17]

A. Holme, J. Roberts, Pinch-points and multiple locus of generic projections of singular varieties. *Adv. in Math*. **33** (1979), 212–256. MR546294 Zbl 0499.14022CrossrefGoogle Scholar

[18]

A. L. Knutsen, On *k*th-order embeddings of *K*3 surfaces and Enriques surfaces. *Manuscripta Math*. **104** (2001), 211–237. MR1821184 Zbl 1017.14015CrossrefGoogle Scholar

[19]

I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces. *Ann. of Math*. (2) **127** (1988), 309–316. MR932299 Zbl 0663.14010CrossrefGoogle Scholar

[20]

B. Saint-Donat, Projective models of *K* – 3 surfaces. *Amer. J. Math*. **96** (1974), 602–639. MR0364263 Zbl 0301.14011CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.