Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard


IMPACT FACTOR 2018: 0.789

CiteScore 2018: 0.73

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.908

Mathematical Citation Quotient (MCQ) 2018: 0.53

Online
ISSN
1615-7168
See all formats and pricing
More options …
Ahead of print

Issues

Building lattices and zeta functions

Anton Deitmar / Ming-Hsuan Kang
  • Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan 30010, Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rupert McCallum
Published Online: 2019-07-04 | DOI: https://doi.org/10.1515/advgeom-2019-0022

Abstract

We give a Lefschetz formula for tree lattices and apply it to geometric zeta functions. We further generalize Bass’s approach to Ihara zeta functions to the higher-dimensional case of a building.

Keywords: Building; tree lattice; Lefschetz formula; zeta function

MSC 2010: 51E24; 11M36; 20E42; 20F65; 22D05; 22E40

References

  • [1]

    P. Abramenko, K. S. Brown, Buildings. Springer 2008. MR2439729 Zbl 1214.20033Google Scholar

  • [2]

    N. Anantharaman, S. Zelditch, Patterson-Sullivan distributions and quantum ergodicity. Ann. Henri Poincaré 8 (2007), 361–426. MR2314452 Zbl 1187.81175CrossrefGoogle Scholar

  • [3]

    W. Ballmann, M. Brin, Orbihedra of nonpositive curvature. Inst. Hautes Études Sci. Publ. Math. no. 82 (1995), 169–209 (1996). MR1383216 Zbl 0866.53029CrossrefGoogle Scholar

  • [4]

    H. Bass, The Ihara-Selberg zeta function of a tree lattice. Internat. J. Math. 3 (1992), 717–797. MR1194071 Zbl 0767.11025CrossrefGoogle Scholar

  • [5]

    N. Bourbaki, Integration. II. Chapters 79. Springer 2004. MR2098271 Zbl 1095.28002Google Scholar

  • [6]

    M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature. Springer 1999. MR1744486 Zbl 0988.53001Google Scholar

  • [7]

    F. Bruhat, J. Tits, Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math. no. 41 (1972), 5–251. MR0327923 Zbl 0254.14017CrossrefGoogle Scholar

  • [8]

    A. Deitmar, Torus actions on compact quotients. J. Lie Theory 6 (1996), 179–190. MR1424631 Zbl 0881.22005Google Scholar

  • [9]

    A. Deitmar, Geometric zeta-functions on p-adic groups. Math. Japon. 47 (1998), 1–17. MR1606279 Zbl 1053.11537Google Scholar

  • [10]

    A. Deitmar, Geometric zeta functions of locally symmetric spaces. Amer. J. Math. 122 (2000), 887–926. MR1781924 Zbl 0999.22015CrossrefGoogle Scholar

  • [11]

    A. Deitmar, Class numbers of orders in cubic fields. J. Number Theory 95 (2002), 150–166. MR1924095 Zbl 1052.11078CrossrefGoogle Scholar

  • [12]

    A. Deitmar, A prime geodesic theorem for higher rank spaces. Geom. Funct. Anal. 14 (2004), 1238–1266. MR2135166 Zbl 1102.11028CrossrefGoogle Scholar

  • [13]

    A. Deitmar, A discrete Lefschetz formula. Topology Appl. 153 (2006), 2363–2381. MR2243717 Zbl 1161.11346CrossrefGoogle Scholar

  • [14]

    A. Deitmar, A higher rank Lefschetz formula. J. Fixed Point Theory Appl. 2 (2007), 1–40. MR2336497 Zbl 1205.58014CrossrefWeb of ScienceGoogle Scholar

  • [15]

    A. Deitmar, S. Echterhoff, Principles of harmonic analysis. Springer 2014. MR3289059 Zbl 1300.43001Google Scholar

  • [16]

    A. Deitmar, W. Hoffmann, Asymptotics of class numbers. Invent. Math. 160 (2005), 647–675. MR2178705 Zbl 1102.11060CrossrefGoogle Scholar

  • [17]

    A. Deitmar, M.-H. Kang, Geometric zeta functions for higher rank p-adic groups. Illinois J. Math. 58 (2014), 719–738. MR3395960 Zbl 1377.11102CrossrefGoogle Scholar

  • [18]

    A. Deitmar, M.-H. Kang, Tree-lattice zeta functions and class numbers. Michigan Math. J. 67 (2018), 617–645. MR3835566 Zbl 06969986Web of ScienceCrossrefGoogle Scholar

  • [19]

    A. Deitmar, R. McCallum, A prime geodesic theorem for higher rank buildings. Kodai Math. J. 41 (2018), 440–455. MR3824861 Zbl 06936463CrossrefWeb of ScienceGoogle Scholar

  • [20]

    P. Garrett, Buildings and classical groups. Chapman & Hall, London 1997. MR1449872 Zbl 0933.20019Google Scholar

  • [21]

    J. E. Humphreys, Reflection groups and Coxeter groups. Cambridge Univ. Press 1990. MR1066460 Zbl 0725.20028Google Scholar

  • [22]

    Y. Ihara, Discrete subgroups of PL(2, k). In: Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), 272–278, Amer. Math. Soc. 1966. MR0205952 Zbl 0261.20029Google Scholar

  • [23]

    Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields. J. Math. Soc. Japan 18 (1966), 219–235. MR0223463 Zbl 0158.27702CrossrefGoogle Scholar

  • [24]

    A. Juhl, Cohomological theory of dynamical zeta functions. Birkhäuser, Basel 2001. MR1808296 Zbl 1099.37017Google Scholar

  • [25]

    Y. A. Kordyukov, Index theory and noncommutative geometry on manifolds with foliations (Russian). Uspekhi Mat. Nauk 64 (2009), no. 2 (386), 73–202. English: Russian Math. Surveys 64 (2009), no. 2, 27–391. MR2530918 Zbl 1180.58006Google Scholar

  • [26]

    B. Margaux, The structure of the group G(k[t]): variations on a theme of Soulé. Algebra Number Theory 3 (2009), 393–409. MR2525556 Zbl 1178.20043CrossrefGoogle Scholar

  • [27]

    J. Parkinson, Buildings and Hecke algebras. J. Algebra 297 (2006), 1–49. MR2206366 Zbl 1095.20003CrossrefWeb of ScienceGoogle Scholar

  • [28]

    R. S. Pierce, Associative algebras. Springer 1982. MR674652 Zbl 0497.16001Google Scholar

  • [29]

    I. Reiner, Maximal orders, volume 28 of London Mathematical Society Monographs. New Series. Oxford Univ. Press 2003. MR1972204 Zbl 1024.16008Google Scholar

  • [30]

    P. Sarnak, Class numbers of indefinite binary quadratic forms. J. Number Theory 15 (1982), 229–247. MR675187 Zbl 0499.10021CrossrefGoogle Scholar

  • [31]

    J.-P. Serre, Trees. Springer 2003. MR1954121 Zbl 1013.20001Google Scholar

  • [32]

    C. Soulé, Chevalley groups over polynomial rings. In: Homological group theory (Proc. Sympos., Durham, 1977), volume 36 of London Math. Soc. Lecture Note Ser., 359–367, Cambridge Univ. Press 1979. MR564437 Zbl 0437.20036Google Scholar

  • [33]

    T. Tamagawa, On discrete subgroups of p-adic algebraic groups. In: Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), 11–17, Harper & Row, New York 1965. MR0195864 Zbl 0158.27801Google Scholar

About the article

Received: 2017-08-09

Revised: 2018-09-13

Published Online: 2019-07-04


Communicated by: H. Van Maldeghem

Funding: The third author was funded by DFG grant DE 436/10-1.


Citation Information: Advances in Geometry, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2019-0022.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in