[1]

A. Barros, R. Batista, E. Ribeiro, Jr., Compact almost Ricci solitons with constant scalar curvature are gradient. *Monatsh. Math*. **174** (2014), 29–39. MR3190769 Zbl 1296.53092Web of ScienceCrossrefGoogle Scholar

[2]

A. Barros, E. Ribeiro, Jr., Some characterizations for compact almost Ricci solitons. *Proc. Amer. Math. Soc*. **140** (2012), 1033–1040. MR2869087 Zbl 1245.53044CrossrefWeb of ScienceGoogle Scholar

[3]

D. E. Blair, *Riemannian geometry of contact and symplectic manifolds*. Birkhäuser, Boston, MA 2002. MR1874240 Zbl 1011.53001Google Scholar

[4]

D. E. Blair, R. Sharma, Generalization of Myers' theorem on a contact manifold. *Illinois J. Math*. **34** (1990), 837–844. MR1062777 Zbl 0705.53020CrossrefGoogle Scholar

[5]

J.-P. Bourguignon, J.-P. Ezin, Scalar curvature functions in a conformal class of metrics and conformal transformations. *Trans. Amer. Math. Soc*. **301** (1987), 723–736. MR882712 Zbl 0622.53023CrossrefGoogle Scholar

[6]

C. P. Boyer, K. Galicki, Einstein manifolds and contact geometry. *Proc. Amer. Math. Soc*. **129** (2001), 2419–2430. MR1823927 Zbl 0981.53027CrossrefGoogle Scholar

[7]

C. P. Boyer, K. Galicki, P. Matzeu, On eta-Einstein Sasakian geometry. *Comm. Math. Phys*. **262** (2006), 177–208. MR2200887 Zbl 1103.53022CrossrefGoogle Scholar

[8]

E. Calviño Louzao, M. Fernández-López, E. García-Río, R. Vázquez-Lorenzo, Homogeneous Ricci almost solitons. *Israel J. Math*. **220** (2017), 531–546. MR3666435 Zbl 06788693CrossrefWeb of ScienceGoogle Scholar

[9]

P. Candelas, G. T. Horowitz, A. Strominger, E. Witten, Vacuum configurations for superstrings. *Nuclear Phys. B* **258** (1985), 46–74. MR800347CrossrefGoogle Scholar

[10]

H.-D. Cao, Recent progress on Ricci solitons. In: *Recent advances in geometric analysis*, volume 11 of *Adv. Lect. Math. (ALM)*, 1–38, Int. Press, Somerville, MA 2010. MR2648937 Zbl 1201.53046Google Scholar

[11]

J. T. Cho, R. Sharma, Contact geometry and Ricci solitons. *Int. J. Geom. Methods Mod. Phys*. **7** (2010), 951–960. MR2735600 Zbl 1202.53063Web of ScienceCrossrefGoogle Scholar

[12]

A. Ghosh, Notes on contact *η*-Einstein metrics as Ricci solitons. *Beitr. Algebra Geom*. **54** (2013), 567–573. MR3095742 Zbl 1279.53042CrossrefGoogle Scholar

[13]

A. Ghosh, Certain contact metrics as Ricci almost solitons. *Results Math*. **65** (2014), 81–94. MR3162430 Zbl 1305.53048Web of ScienceCrossrefGoogle Scholar

[14]

A. Ghosh, R. Sharma, Sasakian metric as a Ricci soliton and related results. *J. Geom. Phys*. **75** (2014), 1–6. MR3126930 Zbl 1283.53035CrossrefWeb of ScienceGoogle Scholar

[15]

J. Maldacena, The large-*N* limit of superconformal field theories and supergravity. *Internat. J. Theoret. Phys*. **38** (1999), 1113–1133. MR1705508 Zbl 0969.81047CrossrefGoogle Scholar

[16]

S. B. Myers, Connections between differential geometry and topology. I. Simply connected surfaces. *Duke Math. J*. **1** (1935), 376–391. MR1545884 Zbl 0012.27502CrossrefGoogle Scholar

[17]

M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere. *J. Math. Soc. Japan* **14** (1962), 333–340. MR0142086 Zbl 0115.39302CrossrefGoogle Scholar

[18]

M. Okumura, On infinitesimal conformal and projective transformations of normal contact spaces. *Tôhoku Math. J. (2)* **14** (1962), 398–412. MR0146774 Zbl 0107.16201CrossrefGoogle Scholar

[19]

Z. Olszak, On contact metric manifolds. *Tôhoku Math. J. (2)* **31** (1979), 247–253. MR538923 Zbl 0397.53026CrossrefGoogle Scholar

[20]

G. Perelman, The entropy formula for the Ricci flow and its geometric applications. Preprint 2002, arXiv:math/0211159 [math.DG]Google Scholar

[21]

D. Perrone, Contact metric manifolds whose characteristic vector field is a harmonic vector field. *Differential Geom. Appl*. **20** (2004), 367–378. MR2053920 Zbl 1061.53028CrossrefGoogle Scholar

[22]

S. Pigola, M. Rigoli, M. Rimoldi, A. G. Setti, Ricci almost solitons. *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)* **10** (2011), 757–799. MR2932893 Zbl 1239.53057Google Scholar

[23]

R. Sharma, Almost Ricci solitons and *K*-contact geometry. *Monatsh. Math*. **175** (2014), 621–628. MR3273671 Zbl 1307.53038Web of ScienceCrossrefGoogle Scholar

[24]

R. Sharma, A. Ghosh, Sasakian 3-manifold as a Ricci soliton represents the Heisenberg group. *Int. J. Geom. Methods Mod. Phys*. **8** (2011), 149–154. MR2782881 Zbl 1213.53060Web of ScienceCrossrefGoogle Scholar

[25]

S. Tanno, The topology of contact Riemannian manifolds. *Illinois J. Math*. **12** (1968), 700–717. MR0234486 Zbl 0165.24703CrossrefGoogle Scholar

[26]

Y. Tashiro, On conformal collineations. *Math. J. Okayama Univ*. **10** (1960), 75–85. Zbl 0103.14904Google Scholar

[27]

K. Yano, *Integral formulas in Riemannian geometry*. Dekker 1970. MR0284950 Zbl 0213.23801Google Scholar

[28]

K. Yano, T. Nagano, Einstein spaces admitting a one-parameter group of conformal transformations. *Ann. of Math. (2)* **69** (1959), 451–461. MR0101535 Zbl 0088.14204CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.