[1]

M. Aprodu, G. Farkas, Green’s conjecture for general covers. In: *Compact moduli spaces and vector bundles*, volume 564 of *Contemp. Math.*, 211–226, Amer. Math. Soc. 2012. MR2894637 Zbl 1251.13012

[2]

E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, *Geometry of algebraic curves. Vol. I.* Springer 1985. MR770932 Zbl 0559.14017

[3]

A. Castorena, A. López Martín, M. Teixidor i Bigas, Petri map for vector bundles near good bundles. arXiv:1203.0983 [math.AG]

[4]

A. Castorena, M. Teixidor i Bigas, Divisorial components of the Petri locus for pencils. *J. Pure Appl. Algebra* **212** (2008), 1500–1508. MR2391662 Zbl 1153.14024

[5]

M. Chan, A. López Martín, M. Teixidor i Bigas, N. Pflueger, Genera of Brill–Noether curves and staicase paths in Young Tableaux. To appear in *Trans. Amer. Math. Soc.* arXiv:1506.00516 [math.AG]

[6]

F. Cools, J. Draisma, S. Payne, E. Robeva, A tropical proof of the Brill–Noether theorem. *Adv. Math.* **230** (2012), 759–776. MR2914965 Zbl 1325.14080

[7]

D. Eisenbud, J. Harris, Limit linear series: basic theory. *Invent. Math.* **85** (1986), 337–371. MR846932 Zbl 0598.14003

[8]

D. Eisenbud, J. Harris, The Kodaira dimension of the moduli space of curves of genus {$\geq 23$}. *Invent. Math.* **90** (1987), 359–387. MR910206 Zbl 0631.14023

[9]

G. Farkas, Rational maps between moduli spaces of curves and Gieseker–Petri divisors. *J. Algebraic Geom.* **19** (2010), 243–284. MR2580676 Zbl 1210.14029

[10]

J. Harris, I. Morrison, *Moduli of curves*. Springer 1998. MR1631825 Zbl 0913.14005

[11]

J. Harris, D. Mumford, On the Kodaira dimension of the moduli space of curves. *Invent. Math.* **67** (1982), 23–88. MR664324 Zbl 0506.14016

[12]

J. Harris, L. Tu, Chern numbers of kernel and cokernel bundles. *Invent. Math.* **75** (1984), 467–475. MR735336 Zbl 0542.14015

[13]

G. R. Kempf, Curves of {$g^1_d$}–s. *Compositio Math.* **55** (1985), 157–162. MR795712 Zbl 0601.14020

[14]

A. López Martín, M. Teixidor i Bigas, Limit linear series on chains of elliptic curves and tropical divisors on chains of loops. Preprint 2014.Google Scholar

[15]

J. Murray, B. Osserman, Linked determinantal loci and limit linear series. *Proc. Amer. Math. Soc.* **144** (2016), 2399–2410. MR3477056 Zbl 06560764

[16]

A. Ortega, The Brill–Noether curve and Prym–Tyurin varieties. *Math. Ann.* **356** (2013), 809–817. MR3063897 Zbl 1300.14034

[17]

B. Osserman, Two degeneration techniques for maps of curves. In: *Snowbird lectures in algebraic geometry*, volume 388 of *Contemp. Math.*, 137–143, Amer. Math. Soc. 2005. MR2182894

[18]

B. Osserman, A limit linear series moduli scheme. *Ann. Inst. Fourier \U(Grenoble\U)* **56** (2006), 1165–1205. MR2266887 Zbl 1118.14037

[19]

B. Osserman, Limit linear series. Draft monograph https://www.math.ucdavis.edu/$\sim$osserman/math/llsbook.pdfGoogle Scholar

[20]

B. Osserman, Limit linear series moduli stacks in higher rank. arXiv:1405.2937 [math.AG]

[21]

G. P. Pirola, Chern character of degeneracy loci and curves of special divisors. *Ann. Mat. Pura Appl. (4)* **142** (1985), 77–90 (1986). MR839032 Zbl 0596.14009

[22]

R. P. Stanley, *Enumerative combinatorics. Vol. 2*. Cambridge Univ. Press 1999. MR1676282 Zbl 0928.05001

[23]

M. Teixidor i Bigas, For which Jacobi varieties is {$\operatorname{Sing} \Theta$} reducible? *J. Reine Angew. Math.* **354** (1984), 141–149. MR767576 Zbl 0542.14020

[24]

M. Teixidor i Bigas, Limit linear series for vector bundles. *Tohoku Math. J. (2)* **66** (2014), 555–562. MR3350284 Zbl 1317.14078

[25]

G. E. Welters, A theorem of Gieseker–Petri type for Prym varieties. *Ann. Sci. École Norm. Sup. (4)* **18** (1985), 671–683. MR839690 Zbl 0628.14036

[26]

D. Zeilberger, André–s reflection proof generalized to the many-candidate ballot problem. *Discrete Math.* **44** (1983), 325–326. MR696297 Zbl 0508.05008

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.