Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard


IMPACT FACTOR 2018: 0.789

CiteScore 2018: 0.73

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.908

Mathematical Citation Quotient (MCQ) 2018: 0.53

Online
ISSN
1615-7168
See all formats and pricing
More options …
Volume 17, Issue 1

Issues

Invariants of the Brill–Noether curve

Abel Castorena
  • Centro de Ciencias Matemáticas, Unidad Morelia, Universidad Nacional Autónoma de México, Apartado Postal 61-3 (Xangari), 58089 Morelia, Michoacán, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alberto López Martín
  • Corresponding author
  • Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina, 100, Jardim Botânico, Rio de Janeiro, RJ 22460-902, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Montserrat Teixidor i Bigas
Published Online: 2017-02-17 | DOI: https://doi.org/10.1515/advgeom-2016-0027

Abstract

For a projective nonsingular curve of genus g, the Brill–Noether locus Wdr(C) parametrizes line bundles of degree d over C with at least r + 1 (linearly independent) sections. When the curve is generic and the Brill–Noether number ρ(g, r, d) equals 1, one can then talk of the Brill–Noether curve. We introduce combinatorial methods that, with help from the theory of limit linear series, allow us to find invariants of Brill–Noether loci. In particular, we explore the first two invariants of the Brill–Noether curve, giving a new way of calculating the genus of this curve and computing its gonality when C has genus 5.

Kwywords: Brill–Noether curve; limit linear series; genus

MSC 2010: Primary 14H60; Secondary 14H51; 05E15

Communicated by: I. Coskun

References

  • [1]

    M. Aprodu, G. Farkas, Green’s conjecture for general covers. In: Compact moduli spaces and vector bundles, volume 564 of Contemp. Math., 211–226, Amer. Math. Soc. 2012. MR2894637 Zbl 1251.13012

  • [2]

    E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, Geometry of algebraic curves. Vol. I. Springer 1985. MR770932 Zbl 0559.14017

  • [3]

    A. Castorena, A. López Martín, M. Teixidor i Bigas, Petri map for vector bundles near good bundles. arXiv:1203.0983 [math.AG]

  • [4]

    A. Castorena, M. Teixidor i Bigas, Divisorial components of the Petri locus for pencils. J. Pure Appl. Algebra 212 (2008), 1500–1508. MR2391662 Zbl 1153.14024

  • [5]

    M. Chan, A. López Martín, M. Teixidor i Bigas, N. Pflueger, Genera of Brill–Noether curves and staicase paths in Young Tableaux. To appear in Trans. Amer. Math. Soc. arXiv:1506.00516 [math.AG]

  • [6]

    F. Cools, J. Draisma, S. Payne, E. Robeva, A tropical proof of the Brill–Noether theorem. Adv. Math. 230 (2012), 759–776. MR2914965 Zbl 1325.14080

  • [7]

    D. Eisenbud, J. Harris, Limit linear series: basic theory. Invent. Math. 85 (1986), 337–371. MR846932 Zbl 0598.14003

  • [8]

    D. Eisenbud, J. Harris, The Kodaira dimension of the moduli space of curves of genus {$\geq 23$}. Invent. Math. 90 (1987), 359–387. MR910206 Zbl 0631.14023

  • [9]

    G. Farkas, Rational maps between moduli spaces of curves and Gieseker–Petri divisors. J. Algebraic Geom. 19 (2010), 243–284. MR2580676 Zbl 1210.14029

  • [10]

    J. Harris, I. Morrison, Moduli of curves. Springer 1998. MR1631825 Zbl 0913.14005

  • [11]

    J. Harris, D. Mumford, On the Kodaira dimension of the moduli space of curves. Invent. Math. 67 (1982), 23–88. MR664324 Zbl 0506.14016

  • [12]

    J. Harris, L. Tu, Chern numbers of kernel and cokernel bundles. Invent. Math. 75 (1984), 467–475. MR735336 Zbl 0542.14015

  • [13]

    G. R. Kempf, Curves of {$g^1_d$}–s. Compositio Math. 55 (1985), 157–162. MR795712 Zbl 0601.14020

  • [14]

    A. López Martín, M. Teixidor i Bigas, Limit linear series on chains of elliptic curves and tropical divisors on chains of loops. Preprint 2014.Google Scholar

  • [15]

    J. Murray, B. Osserman, Linked determinantal loci and limit linear series. Proc. Amer. Math. Soc. 144 (2016), 2399–2410. MR3477056 Zbl 06560764

  • [16]

    A. Ortega, The Brill–Noether curve and Prym–Tyurin varieties. Math. Ann. 356 (2013), 809–817. MR3063897 Zbl 1300.14034

  • [17]

    B. Osserman, Two degeneration techniques for maps of curves. In: Snowbird lectures in algebraic geometry, volume 388 of Contemp. Math., 137–143, Amer. Math. Soc. 2005. MR2182894

  • [18]

    B. Osserman, A limit linear series moduli scheme. Ann. Inst. Fourier \U(Grenoble\U) 56 (2006), 1165–1205. MR2266887 Zbl 1118.14037

  • [19]

    B. Osserman, Limit linear series. Draft monograph https://www.math.ucdavis.edu/$\sim$osserman/math/llsbook.pdfGoogle Scholar

  • [20]

    B. Osserman, Limit linear series moduli stacks in higher rank. arXiv:1405.2937 [math.AG]

  • [21]

    G. P. Pirola, Chern character of degeneracy loci and curves of special divisors. Ann. Mat. Pura Appl. (4) 142 (1985), 77–90 (1986). MR839032 Zbl 0596.14009

  • [22]

    R. P. Stanley, Enumerative combinatorics. Vol. 2. Cambridge Univ. Press 1999. MR1676282 Zbl 0928.05001

  • [23]

    M. Teixidor i Bigas, For which Jacobi varieties is {$\operatorname{Sing} \Theta$} reducible? J. Reine Angew. Math. 354 (1984), 141–149. MR767576 Zbl 0542.14020

  • [24]

    M. Teixidor i Bigas, Limit linear series for vector bundles. Tohoku Math. J. (2) 66 (2014), 555–562. MR3350284 Zbl 1317.14078

  • [25]

    G. E. Welters, A theorem of Gieseker–Petri type for Prym varieties. Ann. Sci. École Norm. Sup. (4) 18 (1985), 671–683. MR839690 Zbl 0628.14036

  • [26]

    D. Zeilberger, André–s reflection proof generalized to the many-candidate ballot problem. Discrete Math. 44 (1983), 325–326. MR696297 Zbl 0508.05008

About the article

Received: 2014-12-28

Revised: 2015-06-26

Published Online: 2017-02-17

Published in Print: 2017-01-01


Citation Information: Advances in Geometry, Volume 17, Issue 1, Pages 39–52, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2016-0027.

Export Citation

© 2017 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Abel Castorena, Alberto López Martín, and Montserrat Teixidor i Bigas
Journal of Pure and Applied Algebra, 2017

Comments (0)

Please log in or register to comment.
Log in