[1]

J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and *m*-ovoids of finite polar spaces. *J. Combin. Theory Ser. A* **114** (2007), 1293–1314. MR2353124 Zbl 1124.51003Google Scholar

[2]

L. Beukemann, K. Metsch, Small tight sets of hyperbolic quadrics. *Des. Codes Cryptogr*. **68** (2013), 11–24. MR3046332 Zbl 1277.51009Google Scholar

[3]

A. Blokhuis, On the size of a blocking set in PG(2, *p*). *Combinatorica* **14** (1994), 111–114. MR1273203 Zbl 0803.05011CrossrefGoogle Scholar

[4]

A. Blokhuis, Blocking sets in Desarguesian planes. In: *Combinatorics, Paul Erdős is eighty, Vol*. 2 (*Keszthely*, 1993), volume 2 of *Bolyai Soc. Math. Stud*., 133–155, János Bolyai Math. Soc., Budapest 1996. MR1395857 Zbl 0849.51005Google Scholar

[5]

A. Blokhuis, L. Lovász, L. Storme, T. Szőnyi, On multiple blocking sets in Galois planes. *Adv. Geom*. **7** (2007), 39–53. MR2290638 Zbl 1123.51012Google Scholar

[6]

A. Blokhuis, L. Storme, T. Szőnyi, Lacunary polynomials, multiple blocking sets and Baer subplanes. *J. London Math. Soc*. (2) **60** (1999), 321–332. MR1724814 Zbl 0940.51007Google Scholar

[7]

R. C. Bose, R. C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. *J. Combin. Theory Ser. A* **1** (1966), 96–104. MR0197215 Zbl 0152.18106Google Scholar

[8]

A. Bruen, Baer subplanes and blocking sets. *Bull.Amer. Math. Soc*. **76** (1970), 342–344. MR0251629 Zbl 0207.02601Google Scholar

[9]

A. A. Bruen, Intersection of Baer subgeometries. *Arch. Math. (Basel)* **39** (1982), 285–288. MR682458 Zbl 0477.51008Google Scholar

[10]

A. A. Bruen, J. W. P. Hirschfeld, Intersections in projective space. I. Combinatorics. *Math. Z*. **193** (1986), 215–225. MR856149 Zbl 0579.51010Google Scholar

[11]

A. Cossidente, F. Pavese, On the geometry of unitary involutions. *Finite Fields Appl*. **36** (2015), 14–28. MR3396373 Zbl 1328.51001Google Scholar

[12]

J. De Beule, A. Gács, Complete arcs on the parabolic quadric Q(4, q). *Finite Fields Appl*. **14** (2008), 14–21. MR2381472 Zbl 1137.51008Google Scholar

[13]

J. De Beule, P. Govaerts, A. Hallez, L. Storme, Tight sets, weighted *m*-covers, weighted *m*-ovoids, and minihypers. *Des. Codes Cryptogr*. **50** (2009), 187–201. MR2469977 Zbl 1246.51006Google Scholar

[14]

J. De Beule, A. Klein, K. Metsch, L. Storme, Partial ovoids and partial spreads of classical finite polar spaces. *Serdica Math. J*. **34** (2008), 689–714. MR2489960 Zbl 1224.05071Google Scholar

[15]

S. De Winter, K. Thas, Bounds on partial ovoids and spreads in classical generalized quadrangles. *Innov. Incidence Geom*. **11** (2010), 19–33. MR2795055 Zbl 1266.51005Google Scholar

[16]

G. Donati, N. Durante, On the intersection of two subgeometries of PG(*n*, *q*). *Des. Codes Cryptogr*. **46** (2008), 261–267. MR2372839 Zbl 1185.51010Google Scholar

[17]

K. W. Drudge, *Extremal sets in projective and polar spaces*. PhD thesis, Univ. Western Ontario (1998). MR2698237Google Scholar

[18]

V. Fack, S. L. Fancsali, L. Storme, G. Van de Voorde, J. Winne, Small weight codewords in the codes arising from Desarguesian projective planes. *Des. Codes Cryptogr*. **46** (2008), 25–43. MR2361839 Zbl 1182.94062Google Scholar

[19]

P. Govaerts, L. Storme, On a particular class of minihypers and its applications. II. Improvements for *q* square. *J. Combin. Theory Ser. A* **97** (2002), 369–393. MR1883871 Zbl 1009.51004Google Scholar

[20]

P. Govaerts, L. Storme, H. Van Maldeghem, On a particular class of minihypers and its applications. III. Applications. *European J. Combin*. **23** (2002), 659–672. MR1924787 Zbl 1022.51005Google Scholar

[21]

A. Hallez, *Linear codes and blocking structures in finite projective and polar spaces*. PhD thesis, Ghent University (2010).Google Scholar

[22]

N. Hamada, *Characterization of minihypers in a finite projective geometry and its applications to error-correcting codes*. Bull. Osaka Women’s Univ. **24** (1987), 1–24.Google Scholar

[23]

N. Hamada, T. Helleseth, A characterization of some *q*-ary codes (*q* > (*h* − 1)^{2}, *h* ≥3) meeting the Griesmer bound. *Math. Japon*. **38** (1993), 925–939. MR1240296 Zbl 0786.05016Google Scholar

[24]

M. Lavrauw, L. Storme, G. Van de Voorde, On the code generated by the incidence matrix of points and *k*-spaces in PG(*n*, *q*) and its dual. *Finite Fields Appl*. **14** (2008), 1020–1038. MR2457544 Zbl 1153.51006Google Scholar

[25]

G. Lunardon, Linear *k*-blocking sets. *Combinatorica* **21** (2001), 571–581. MR1863578 Zbl 0996.51003CrossrefGoogle Scholar

[26]

K. Metsch, L. Storme, Partial *t*-spreads in PG(2*t* + 1, *q*). *Des. Codes Cryptogr*. **18** (1999), 199–216. MR1738667 Zbl 0964.51005Google Scholar

[27]

P. Polito, O. Polverino, On small blocking sets. *Combinatorica* **18** (1998), 133–137. MR1645666 Zbl 0910.05017CrossrefGoogle Scholar

[28]

O. Polverino, Small minimal blocking sets and complete *k*-arcs in PG(2, *p*^{3}). *Discrete Math*. **208/209** (1999), 469–476. MR1725553 Zbl 0941.51008Google Scholar

[29]

L. Rédei, *Lückenhafte Polynome über endlichen Körpern*. Birkhäuser 1970. MR0294297 Zbl 0321.12028Google Scholar

[30]

M. Sved, Baer subspaces in the *n*-dimensional projective space. In: *Combinatorial mathematics, X* (*Adelaide*, 1982), volume 1036 of *Lecture Notes in Math*., 375–391, Springer 1983. MR731594 Zbl 0527.51021Google Scholar

[31]

P. Sziklai, On small blocking sets and their linearity. *J. Combin. Theory Ser. A* **115** (2008), 1167–1182. MR2450336 Zbl 1156.51007Google Scholar

[32]

T. Szőnyi, Blocking sets in Desarguesian affine and projective planes. *Finite Fields Appl*. **3** (1997), 187–202. MR1459823 Zbl 0912.51004Google Scholar

[33]

T. Szönyi, Z. Weiner, Small blocking sets in higher dimensions. *J. Combin. Theory Ser. A* **95** (2001), 88–101. MR1840479 Zbl 0983.51006Google Scholar

[34]

Z. Weiner, Small point sets of PG(*n*, *q*) intersecting each *k*-space in 1 modulo
$\sqrt{q}$ points. *Innov. Incidence Geom*. **1** (2005), 171–180. MR2213957 Zbl 1113.51003Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.