Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard


IMPACT FACTOR 2018: 0.789

CiteScore 2018: 0.73

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.908

Mathematical Citation Quotient (MCQ) 2017: 0.62

Online
ISSN
1615-7168
See all formats and pricing
More options …
Volume 18, Issue 1

Issues

Polytopal approximation of elongated convex bodies

Gilles Bonnet
Published Online: 2018-01-07 | DOI: https://doi.org/10.1515/advgeom-2017-0038

Abstract

This paper presents bounds for the best approximation, with respect to the Hausdorff metric, of a convex body K by a circumscribed polytope P with a given number of facets. These bounds are of particular interest if K is elongated. To measure the elongation of the convex set, its isoperimetric ratio Vj(K)1/j Vi(K)−1/i is used.

Keywords: Polytopal approximation; elongated convex bodies; isoperimetric ratio; δ-net

MSC 2010: Primary 52A27; 52B11; Secondary 52B60

References

  • [1]

    S. Artstein-Avidan, A. Giannopoulos, V. D. Milman, Asymptotic geometric analysis. Part I, volume 202 of Mathematical Surveys and Monographs. Amer. Math. Soc. 2015. MR3331351 Zbl 1337.52001Google Scholar

  • [2]

    K. Ball, An elementary introduction to modern convex geometry. In: Flavors of geometry, volume 31 of Math. Sci. Res. Inst. Publ., 1–58, Cambridge Univ. Press 1997. MR1491097 Zbl 0901.52002Google Scholar

  • [3]

    K. Böröczky, Jr., Approximation of general smooth convex bodies. Adv. Math. 153 (2000), 325–341. MR1770932 Zbl 0964.52010CrossrefGoogle Scholar

  • [4]

    A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovász, M. Simonovits, Deterministic and randomized polynomial-time approximation of radii. Mathematika 48 (2001), 63–105 (2003). MR1996363 Zbl 1136.52307CrossrefGoogle Scholar

  • [5]

    E. M. Bronstein, Approximation of convex sets by polytopes. J. Math. Sci., New York 153 (2008), 727–762. MR2336506 Zbl 1161.52001CrossrefGoogle Scholar

  • [6]

    E. M. Bronstein, L. D. Ivanov, The approximation of convex sets by polyhedra. Sib. Math. J. 16 (1976), 852–853. MR0400054 Zbl 0329.52013CrossrefGoogle Scholar

  • [7]

    R. M. Dudley, Metric entropy of some classes of sets with differentiable boundaries. J. Approximation Theory 10 (1974), 227–236. MR0358168 Zbl 0275.41011CrossrefGoogle Scholar

  • [8]

    L. Fejes Tóth, Approximation by polygons and polyhedra. Bull. Amer. Math. Soc. 54 (1948), 431–438. MR0024640 Zbl 0031.27806CrossrefGoogle Scholar

  • [9]

    P. M. Gruber, Aspects of approximation of convex bodies. In: Handbook of convex geometry, Vol. A, B, 319–345, North-Holland 1993. MR1242984 Zbl 0791.52007Google Scholar

  • [10]

    P. M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies. I. Forum Math. 5 (1993), 281–297. MR1216036 Zbl 0780.52005Google Scholar

  • [11]

    P. M. Gruber, Approximation by convex polytopes. In: Polytopes: abstract, convex and computational (Scarborough, ON, 1993), volume 440 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 173–203, Kluwer 1994. MR1322062 Zbl 0824.52007Google Scholar

  • [12]

    P. M. Gruber, Convex and discrete geometry. Springer 2007. MR2335496 Zbl 1139.52001Google Scholar

  • [13]

    F. John, Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, 187–204, Interscience Publ. 1948. MR0030135 Zbl 0034.10503Google Scholar

  • [14]

    D. E. McClure, R. A. Vitale, Polygonal approximation of plane convex bodies. J. Math. Anal. Appl. 51 (1975), 326–358. MR0385714 Zbl 0315.52004CrossrefGoogle Scholar

  • [15]

    S. Reisner, C. Schütt, E. Werner, Dropping a vertex or a facet from a convex polytope. Forum Math. 13 (2001), 359–378. MR1831090 Zbl 0980.52002Google Scholar

  • [16]

    R. M. Richardson, V. H. Vu, L. Wu, An inscribing model for random polytopes. Discrete Comput. Geom. 39 (2008), 469–499. MR2383772 Zbl 1148.52006CrossrefWeb of ScienceGoogle Scholar

  • [17]

    R. Schneider, Zur optimalen Approximation konvexer Hyperflächen durch Polyeder. Math. Ann. 256 (1981), 289–301. MR626950 Zbl 0445.52004CrossrefGoogle Scholar

  • [18]

    R. Schneider, Polyhedral approximation of smooth convex bodies. J. Math. Anal. Appl. 128 (1987), 470–474. MR917379 Zbl 0629.52006CrossrefGoogle Scholar

About the article


Received: 2015-10-22

Revised: 2016-04-18

Published Online: 2018-01-07

Published in Print: 2018-01-26


Citation Information: Advances in Geometry, Volume 18, Issue 1, Pages 105–114, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2017-0038.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in