Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

IMPACT FACTOR 2018: 0.789

CiteScore 2018: 0.73

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.908

Mathematical Citation Quotient (MCQ) 2017: 0.62

See all formats and pricing
More options …
Volume 18, Issue 2


Classification of degree two curves in the symmetric square with positive self-intersection

Meritxell Sáez
Published Online: 2018-01-31 | DOI: https://doi.org/10.1515/advgeom-2017-0046


We give a precise classification of the pairs (C, ) with C a smooth curve of genus g and C(2) a curve of degree two and positive self-intersection. We prove that there are no such pairs if g < pa() < 2g−1. We study the singularities and self-intersection of any degree two curve in C(2). Moreover, we give examples of curves with arithmetic genus in the Brill–Noether range and positive self-intersection on C × C.

Keywords: Symmetric product; curve; irregular surface; curves in surfaces

MSC 2010: Primary 14H45; Secondary 14J25; 14H37; 14H10


  • [1]

    R. D. M. Accola, Topics in the theory of Riemann surfaces. Springer 1994. MR1329541 Zbl 0820.30002Google Scholar

  • [2]

    R. D. M. Accola, On the Castelnuovo-Severi inequality for Riemann surfaces. Kodai Math. J. 29 (2006), 299–317. MR2247438 Zbl 1116.14019CrossrefGoogle Scholar

  • [3]

    A. Albano, G. P. Pirola, Dihedral monodromy and Xiao fibrations. Ann. Mat. Pura Appl. (4) 195 (2016), 1255–1268. MR3522345 Zbl 1346.14028Web of ScienceCrossrefGoogle Scholar

  • [4]

    E. Bujalance, F. J. Cirre, J. M. Gamboa, G. Gromadzki, On compact Riemann surfaces with dihedral groups of automorphisms. Math. Proc. Cambridge Philos. Soc. 134 (2003), 465–477. MR1981212 Zbl 1059.30030CrossrefGoogle Scholar

  • [5]

    F. Catanese, M. Lönne, F. Perroni, Irreducibility of the space of dihedral covers of the projective line of a given numerical type. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 22 (2011), 291–309. MR2847474 Zbl 1268.14025Google Scholar

  • [6]

    H. M. Farkas, I. Kra, Riemann surfaces. Springer 1980. MR583745 Zbl 0475.30001Google Scholar

  • [7]

    M. Fried, Combinatorial computation of moduli dimension of Nielsen classes of covers. In: Graphs and algorithms (Boulder, CO, 1987), volume 89 of Contemp. Math., 61–79, Amer. Math. Soc. 1989. MR1006477 Zbl 0703.14018Google Scholar

  • [8]

    E. Kani, M. Rosen, Idempotent relations and factors of Jacobians. Math. Ann. 284 (1989), 307–327. MR1000113 Zbl 0652.14011CrossrefGoogle Scholar

  • [9]

    A. M. Macbeath, Action of automorphisms of a compact Riemann surface on the first homology group. Bull. London Math. Soc. 5 (1973), 103–108. MR0320301 Zbl 0259.30016CrossrefGoogle Scholar

  • [10]

    M. Mendes Lopes, R. Pardini, G. P. Pirola, Brill-Noether loci for divisors on irregular varieties. J. Eur. Math. Soc. 16 (2014), 2033–2057. MR3274784 Zbl 1317.14019Web of ScienceCrossrefGoogle Scholar

  • [11]

    G. A. Miller, On the groups generated by two operators. Bull. Amer. Math. Soc. 7 (1901), 424–426. MR1557828 JFM 32.0145.03CrossrefGoogle Scholar

  • [12]

    G. P. Pirola, Abel-Jacobi invariant and curves on generic abelian varieties. In: Abelian varieties (Egloffstein, 1993), 237–249, de Gruyter 1995. MR1336610 Zbl 0837.14036Google Scholar

  • [13]

    H. E. Rose, A course on finite groups. Springer 2009. MR2583713 Zbl 1200.20001Google Scholar

  • [14]

    M. Sáez, On low degree curves in C(2). PhD thesis, Universitat de Barcelona, 2014.Google Scholar

  • [15]

    M. Sáez, Characterization of curves in C(2). Collect. Math. 67 (2016), 399–405. MR3536052 Zbl 1353.14041Web of ScienceCrossrefGoogle Scholar

  • [16]

    M. Sáez, On degree three curves in C(2) with positive self-intersection. 2015. arXiv:1508.04971 [math.AG]Google Scholar

  • [17]

    J.-P. Serre, Topics in Galois theory. Jones and Bartlett Publishers, Boston, MA 1992. MR1162313 Zbl 0746.12001Google Scholar

About the article

Received: 2015-08-25

Revised: 2016-02-11

Published Online: 2018-01-31

Published in Print: 2018-04-25

Funding: The author has been partially supported by the Proyecto de Investigación MTM2012-38122-C03-02.

Citation Information: Advances in Geometry, Volume 18, Issue 2, Pages 161–180, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2017-0046.

Export Citation

© 2018 Walter de Gruyter GmbH Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in