Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year


IMPACT FACTOR 2017: 0.734

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.695
Source Normalized Impact per Paper (SNIP) 2017: 0.891

Mathematical Citation Quotient (MCQ) 2017: 0.62

Online
ISSN
1615-7168
See all formats and pricing
More options …
Volume 18, Issue 2

Issues

Pseudo-metric 2-step nilpotent Lie algebras

Christian Autenried / Kenro Furutani
  • Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba (278-8510), Tokyo, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Irina Markina / Alexander Vasiľev
Published Online: 2018-03-27 | DOI: https://doi.org/10.1515/advgeom-2017-0051

Abstract

The metric approach to studying 2-step nilpotent Lie algebras by making use of non-degenerate scalar products is realised. We show that a 2-step nilpotent Lie algebra is isomorphic to its standard pseudo-metric form, that is a 2-step nilpotent Lie algebra endowed with some standard non-degenerate scalar product compatible with the Lie bracket. This choice of the standard pseudo-metric form allows us to study the isomorphism properties. If the elements of the centre of the standard pseudo-metric form constitute a Lie triple system of the pseudo-orthogonal Lie algebra, then the original 2-step nilpotent Lie algebra admits integer structure constants. Among particular applications we prove that pseudo H-type algebras have bases with rational structure constants, which implies that the corresponding pseudo H-type groups admit lattices.

Keywords: Nilpotent Lie algebra; nilmanifold; H-type Lie algebra; non-degenerate scalar product; isomorphism; Lie triple system; lattice; rational space

MSC 2010: Primary: 15A66; 17B30; 22E25

References

  • [1]

    M. F. Atiyah, R. Bott, A. Shapiro, Clifford modules. Topology 3 (1964), 3–38. MR0167985 Zbl 0146.19001CrossrefGoogle Scholar

  • [2]

    C. Autenried, K. Furutani, I. Markina, A. Vasil’ev, Pseudo-metric 2-step nilpotent Lie algebras. 2015. arXiv:1508.02882 [math.RT]Google Scholar

  • [3]

    R. Bott, The stable homotopy of the classical groups. Ann. of Math. (2) 70 (1959), 313–337. MR0110104 Zbl 0129.15601CrossrefGoogle Scholar

  • [4]

    O. Calin, D.-C. Chang, K. Furutani, C. Iwasaki, Heat kernels for elliptic and sub-elliptic operators. Springer 2011. MR2723056 Zbl 1207.35002Web of ScienceGoogle Scholar

  • [5]

    L. Capogna, D. Danielli, S. D. Pauls, J. T. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem. Birkhäuser 2007. MR2312336 Zbl 1138.53003Google Scholar

  • [6]

    D.-C. Chang, I. Markina, Geometric analysis on quaternion ℍ-type groups. J. Geom. Anal. 16 (2006), 265–294. MR2223803 Zbl 1093.53042CrossrefGoogle Scholar

  • [7]

    Z. Chen, J. A. Wolf, Pseudo-Riemannian weakly symmetric manifolds. Ann. Global Anal. Geom. 41 (2012), 381–390. MR2886205 Zbl 1237.53071CrossrefGoogle Scholar

  • [8]

    S.-S. Chern, C. Chevalley, Obituary: Elie Cartan and his mathematical work. Bull. Amer. Math. Soc. 58 (1952), 217–250. MR0046972 Zbl 0046.00304CrossrefGoogle Scholar

  • [9]

    C. Chevalley, Sur certains groupes simples. Tôhoku Math. J. (2) 7 (1955), 14–66. MR0073602 Zbl 0066.01503CrossrefGoogle Scholar

  • [10]

    P. Ciatti, Spherical distributions on harmonic extensions of pseudo-H-type groups. J. Lie Theory 7 (1997), 1–28. MR1450743 Zbl 0883.43013Google Scholar

  • [11]

    P. Ciatti, Scalar products on Clifford modules and pseudo-H-type Lie algebras. Ann. Mat. Pura Appl. (4) 178 (2000), 1–31. MR1849376 Zbl 1027.17008CrossrefGoogle Scholar

  • [12]

    P. Clifford, Applications of Grassmann’s Extensive Algebra. Amer. J. Math. 1 (1878), 350–358. MR1505182CrossrefGoogle Scholar

  • [13]

    L. A. Cordero, P. E. Parker, Isometry groups of pseudoriemannian 2-step nilpotent Lie groups. Houston J. Math. 35 (2009), 49–72. MR2491866 Zbl 1170.53048Google Scholar

  • [14]

    M. Cowling, A. H. Dooley, A. Korányi, F. Ricci, H-type groups and Iwasawa decompositions. Adv. Math. 87 (1991), 1–41. MR1102963 Zbl 0761.22010CrossrefGoogle Scholar

  • [15]

    G. Crandall, J. Dodziuk, Integral structures on H-type Lie algebras. J. Lie Theory 12 (2002), 69–79. MR1885037 Zbl 1035.17018Google Scholar

  • [16]

    V. del Barco, G. P. Ovando, Isometric actions on pseudo-Riemannian nilmanifolds. Ann. Global Anal. Geom. 45 (2014), 95–110. MR3165476 Zbl 1295.53081CrossrefGoogle Scholar

  • [17]

    P. Eberlein, The moduli space of 2-step nilpotent Lie algebras of type (p, q). In: Explorations in complex and Riemannian geometry, volume 332 of Contemp. Math., 37–72, Amer. Math. Soc. 2003. MR2016090 Zbl 1045.17003Google Scholar

  • [18]

    P. Eberlein, Riemannian submersions and lattices in 2-step nilpotent Lie groups. Comm. Anal. Geom. 11 (2003), 441–488. MR2015754 Zbl 1113.22009CrossrefGoogle Scholar

  • [19]

    P. Eberlein, Geometry of 2-step nilpotent Lie groups. In: Modern dynamical systems and applications, 67–101, Cambridge Univ. Press 2004. MR2090766 Zbl 1154.22009Google Scholar

  • [20]

    K. Furutani, I. Markina, Complete classification of pseudo H-type Lie agebras: I. Geom. Dedicata 190 (2017), 23–51. MR3704811 Zbl 06808461CrossrefGoogle Scholar

  • [21]

    K. Furutani, I. Markina, Complete classification of pseudo H-type Lie agebras: II. 2017. arXiv:1703.04948 [math.RT]Google Scholar

  • [22]

    K. Furutani, I. Markina, Existence of lattices on general H-type groups. J. Lie Theory 24 (2014), 979–1011. MR3328733 Zbl 1321.17008Google Scholar

  • [23]

    K. Furutani, I. Markina, A. Vasil’ev, Free nilpotent and H-type Lie algebras. Combinatorial and orthogonal designs. J. Pure Appl. Algebra 219 (2015), 5467–5492. MR3390034 Zbl 1322.15011Web of ScienceCrossrefGoogle Scholar

  • [24]

    B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math. 139 (1977), 95–153. MR0461589 Zbl 0366.22010CrossrefGoogle Scholar

  • [25]

    M. Godoy Molina, A. Korolko, I. Markina, Sub-semi-Riemannian geometry of general H-type groups. Bull. Sci. Math. 137 (2013), 805–833. MR3102160 Zbl 1304.53071Web of ScienceCrossrefGoogle Scholar

  • [26]

    S. Helgason, Differential geometry, Lie groups, and symmetric spaces, volume 80 of Pure and Applied Mathematics. Academic Press 1978. MR514561 Zbl 0451.53038Google Scholar

  • [27]

    C. Jang, P. E. Parker, K. Park, Pseudo H-type 2-step nilpotent Lie groups. Houston J. Math. 31 (2005), 765–786. MR2148813 Zbl 1083.53066Google Scholar

  • [28]

    H. Kammeyer, An explicit rational structure for real semisimple Lie algebras. J. Lie Theory 24 (2014), 307–319. MR3235892 Zbl 1357.17012Google Scholar

  • [29]

    A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Amer. Math. Soc. 258 (1980), 147–153. MR554324 Zbl 0393.35015CrossrefGoogle Scholar

  • [30]

    A. Kaplan, On the geometry of groups of Heisenberg type. Bull. London Math. Soc. 15 (1983), 35–42. MR686346 Zbl 0521.53048CrossrefGoogle Scholar

  • [31]

    A. Kaplan, A. Tiraboschi, Automorphisms of non-singular nilpotent Lie algebras. J. Lie Theory 23 (2013), 1085–1100. MR3185213 Zbl 1362.17019Google Scholar

  • [32]

    A. W. Knapp, Lie groups beyond an introduction. Birkhäuser 2002. MR1920389 Zbl 1075.22501Google Scholar

  • [33]

    A. Korányi, Geometric properties of Heisenberg-type groups. Adv. in Math. 56 (1985), 28–38. MR782541 Zbl 0589.53053CrossrefGoogle Scholar

  • [34]

    T. Y. Lam, The algebraic theory of quadratic forms. W. A. Benjamin, Reading, Mass. 1973. MR0396410 Zbl 0259.10019Google Scholar

  • [35]

    H. B. Lawson, Jr., M.-L. Michelsohn, Spin geometry. Princeton Univ. Press 1989. MR1031992 Zbl 0688.57001Google Scholar

  • [36]

    A. I. Mal’ cev, On a class of homogeneous spaces. Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949), 9–32. MR0028842 Zbl 0034.01701Google Scholar

  • [37]

    G. Métivier, Hypoellipticité analytique sur des groupes nilpotents de rang 2. Duke Math. J. 47 (1980), 195–221. MR563376 Zbl 0433.35015CrossrefGoogle Scholar

  • [38]

    J. W. Milnor, J. D. Stasheff, Characteristic classes. Princeton Univ. Press 1974. MR0440554 Zbl 0298.57008Google Scholar

  • [39]

    D. Müller, A. Seeger, Singular spherical maximal operators on a class of two step nilpotent Lie groups. Israel J. Math. 141 (2004), 315–340. MR2063040 Zbl 1054.22007CrossrefGoogle Scholar

  • [40]

    B. O’Neill, Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics. Academic Press 1983. MR719023 Zbl 0531.53051Google Scholar

  • [41]

    G. P. Ovando, Naturally reductive pseudo-Riemannian 2-step nilpotent Lie groups. Houston J. Math. 39 (2013), 147–167. MR3056434 Zbl 1277.53071Google Scholar

  • [42]

    H. M. Reimann, H-type groups and Clifford modules. Adv. Appl. Clifford Algebras 11 (2001), 277–287. MR2075359 Zbl 1221.15033CrossrefGoogle Scholar

  • [43]

    H. M. Reimann, Rigidity of H-type groups. Math. Z. 237 (2001), 697–725. MR1854087 Zbl 0982.22013CrossrefGoogle Scholar

  • [44]

    W. Wolfe, Amicable orthogonal designs—existence. Canad. J. Math. 28 (1976), 1006–1020. MR0424596 Zbl 0326.05021CrossrefGoogle Scholar

About the article


Received: 2015-08-12

Revised: 2016-01-27

Accepted: 2016-05-03

Published Online: 2018-03-27

Published in Print: 2018-04-25


Citation Information: Advances in Geometry, Volume 18, Issue 2, Pages 237–263, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2017-0051.

Export Citation

© 2018 Walter de Gruyter GmbH Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in