[1]

S. C. Anco, J. Pohjanpelto, Classification of local conservation laws of Maxwell’s equations. *Acta Appl. Math*. **69** (2001), 285–327. MR1885280 Zbl 0989.35126CrossrefGoogle Scholar

[2]

I. M. Anderson, *The variational bicomplex*. Utah State University preprint (1989), http://math.uni.lu/~jubin/seminar/bicomplex.pdf.

[3]

A. V. Bocharov, V. N. Chetverikov, S. V. Duzhin, N. G. Khor’ kova, I. S. Krasil’ shchik, A. V. Samokhin, Y. N. Torkhov, A. M. Verbovetsky, A. M. Vinogradov, *Symmetries and conservation laws for differential equations of mathematical physics*, volume 182 of *Translations of Mathematical Monographs*. Amer. Math. Soc. 1999. MR1670044 Zbl 0911.00032Google Scholar

[4]

E. Fiorani, A. Spiro, Lie algebras of conservation laws of variational ordinary differential equations. *J. Geom. Phys*. **88** (2015), 56–75. MR3293396 Zbl 1308.70050CrossrefWeb of ScienceGoogle Scholar

[5]

S. Germani, *Leggi di conservazione e simmetrie: un approccio geometrico al Teorema di Noether*. Tesi di Laurea Magistrale, Università di Camerino, Camerino, 2012.Google Scholar

[6]

M. Gromov, *Partial differential relations*. Springer 1986. MR864505 Zbl 0651.53001Google Scholar

[7]

D. Joyce, On manifolds with corners. In: *Advances in geometric analysis*, volume 21 of *Adv. Lect. Math*. (*ALM*), 225–258, Int. Press, Somerville, MA 2012. MR3077259 Zbl 1317.58001Google Scholar

[8]

Y. Kosmann-Schwarzbach, *The Noether theorems*. Springer 2011. MR2761345 Zbl 1216.01011Google Scholar

[9]

I. S. Krasil’ shchik, V. V. Lychagin, A. M. Vinogradov, *Geometry of jet spaces and nonlinear partial differential equations*, volume 1 of *Advanced Studies in Contemporary Mathematics*. Gordon and Breach Science Publishers, New York 1986. MR861121 Zbl 0722.35001Google Scholar

[10]

B. A. Kupershmidt, Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalisms. In: *Geometric methods in mathematical physics* (*Proc. NSF-CBMS Conf., Univ. Lowell, Lowell, Mass*., 1979), volume 775 of *Lecture Notes in Math*., 162–218, Springer 1980. MR569303 Zbl 0439.58016Google Scholar

[11]

A. Kushner, V. Lychagin, V. Rubtsov, *Contact geometry and non-linear differential equations*, volume 101 of *Encyclopedia of Mathematics and its Applications*. Cambridge Univ. Press 2007. MR2352610 Zbl 1122.53044Google Scholar

[12]

J. M. Lee, *Introduction to smooth manifolds*. Springer 2013. MR2954043 Zbl 1258.53002Google Scholar

[13]

V. V. Lyčagin, Contact geometry and second-order nonlinear differential equations (Russian). *Uspekhi Mat. Nauk* **34** (1979), no. 1(205), 137–165. MR525652 Zbl 0427.58002Google Scholar

[14]

J. Milnor, *Morse theory*. Princeton Univ. Press 1963. MR0163331 Zbl 0108.10401Google Scholar

[15]

E. Noether, Invariante Variationsprobleme. *Nachr. Königl. Ges. Wissensch. Göttingen, Math.-Phys. Klasse* (1918), 235–257. Zbl 46.0770.01Google Scholar

[16]

P. J. Olver, *Applications of Lie groups to differential equations*. Springer 1986. MR836734 Zbl 0588.22001Google Scholar

[17]

P. J. Olver, Noether’s theorems and systems of Cauchy–Kovalevskaya type. In: *Nonlinear systems of partial differential equations in applied mathematics, Part* 2 (*Santa Fe, N.M*., 1984), volume 23 of *Lectures in Appl. Math*., 81–104, Amer. Math. Soc. 1986. MR837699 Zbl 0656.58039Google Scholar

[18]

P. J. Olver, Book review of [8], *Bull. Amer. Math. Soc*. (*N.S*.) **50** (2013), 161–167. MR2994999Google Scholar

[19]

A. Spiro, Cohomology of Lagrange complexes invariant under pseudogroups of local transformations. *Int. J. Geom. Methods Mod. Phys*. **4** (2007), 669–705. MR2343431 Zbl 1153.70009CrossrefWeb of ScienceGoogle Scholar

[20]

F. Takens, A global version of the inverse problem of the calculus of variations. *J. Differential Geom*. **14** (1979), 543–562 (1981). MR600611 Zbl 0463.58015CrossrefGoogle Scholar

[21]

K. Yamaguchi, Contact geometry of higher order. *Japan. J. Math*. (*N.S*.) **8** (1982), 109–176. MR722524 Zbl 0548.58002CrossrefGoogle Scholar

[22]

K. Yamaguchi, Geometrization of jet bundles. *Hokkaido Math. J*. **12** (1983), 27–40. MR689254 Zbl 0561.58002CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.