Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year

IMPACT FACTOR 2017: 0.734

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.695
Source Normalized Impact per Paper (SNIP) 2017: 0.891

Mathematical Citation Quotient (MCQ) 2017: 0.62

See all formats and pricing
More options …
Volume 18, Issue 3


Harmonicity of vector fields on a class of Lorentzian solvable Lie groups

Ju Tan
  • School of Mathematics and Physics Science and Engineering, Anhui University of Technology, Ma’anshan, 243032, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shaoqiang Deng
  • Corresponding author
  • School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-18 | DOI: https://doi.org/10.1515/advgeom-2017-0014


In this paper, we consider a special class of solvable Lie groups such that for any x, y in their Lie algebras, [x, y] is a linear combination of x and y. We investigate the harmonicity properties of invariant vector fields of this kind of Lorentzian Lie groups. It is shown that any invariant unit time-like vector field is spatially harmonic. Moreover, we determine all vector fields which are critical points of the energy functional restricted to the space of smooth vector fields.

Keywords: Harmonic sections; harmonic maps; Lie group; spatially harmonic

MSC 2010: 53C50; 53C43


  • [1]

    M. Aghasi, M. Nasehi, Some geometrical properties of a five-dimensional solvable Lie group. Differ. Geom. Dyn. Syst. 15 (2013), 1–12. MR3073067 Zbl 1331.53071Google Scholar

  • [2]

    M. Aghasi, M. Nasehi, On the geometrical properties of solvable Lie groups. Adv. Geom. 15 (2015), 507–517. MR3406478 Zbl 1328.53062Web of ScienceGoogle Scholar

  • [3]

    R. P. Albuquerque, On Lie groups with left invariant semi-Riemannian metric. In: Proceedings of the 1st International Meeting on Geometry and Topology (Braga, 1997), 1–13, Cent. Mat. Univ. Minho, Braga 1998. MR1694936 Zbl 0938.53022Google Scholar

  • [4]

    G. Calvaruso, Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups. J. Geom. Phys. 61 (2011), 498–515. MR2746133 Zbl 1221.53093CrossrefWeb of ScienceGoogle Scholar

  • [5]

    G. Calvaruso, Harmonicity of vector fields on four-dimensional generalized symmetric spaces. Cent. Eur. J. Math. 10 (2012), 411–425. MR2886549 Zbl 1246.53083Web of ScienceCrossrefGoogle Scholar

  • [6]

    O. Gil-Medrano, Relationship between volume and energy of vector fields. Differential Geom. Appl. 15 (2001), 137–152. MR1857559 Zbl 1066.53068CrossrefGoogle Scholar

  • [7]

    O. Gil-Medrano, A. Hurtado, Spacelike energy of timelike unit vector fields on a Lorentzian manifold. J. Geom. Phys. 51 (2004), 82–100. MR2078686 Zbl 1076.53086CrossrefGoogle Scholar

  • [8]

    L. K. Graves, Codimension one isometric immersions between Lorentz spaces. Trans. Amer. Math. Soc. 252 (1979), 367–392. MR534127 Zbl 0415.53041CrossrefGoogle Scholar

  • [9]

    M. Guediri, On completeness of left-invariant Lorentz metrics on solvable Lie groups. Rev. Mat. Univ. Complut. Madrid 9 (1996), 337–350. MR1430782 Zbl 0878.53048Google Scholar

  • [10]

    T. Ishihara, Harmonic sections of tangent bundles. J. Math. Tokushima Univ. 13 (1979), 23–27. MR563393 Zbl 0427.53019Google Scholar

  • [11]

    H. Lebzioui, Lorentzian flat Lie groups admitting a timelike left-invariant Killing vector field. Extracta Math. 29 (2014), 159–166. MR3363109 Zbl 1326.53102Google Scholar

  • [12]

    J. Milnor, Curvatures of left invariant metrics on Lie groups. Advances in Math. 21 (1976), 293–329. MR0425012 Zbl 0341.53030CrossrefGoogle Scholar

  • [13]

    K. Nomizu, Left-invariant Lorentz metrics on Lie groups. Osaka J. Math. 16 (1979), 143–150. MR527022 Zbl 0397.53047Google Scholar

  • [14]

    O. Nouhaud, Applications harmoniques d’une variété riemannienne dans son fibré tangent. Généralisation. C. R. Acad. Sci. Paris Sér. A-B 284 (1977), A815–A818. MR0431035 Zbl 0349.53015Google Scholar

  • [15]

    C. M. Wood, On the energy of a unit vector field. Geom. Dedicata 64 (1997), 319–330. MR1440565 Zbl 0878.58017CrossrefGoogle Scholar

About the article

Received: 2015-08-19

Revised: 2016-06-06

Published Online: 2018-07-18

Published in Print: 2018-07-26

Funding: This work was supported by NSFC (no. 11271198, 51535008, 11671212) and SRFDP of China.

Citation Information: Advances in Geometry, Volume 18, Issue 3, Pages 337–344, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2017-0014.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in