Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year

IMPACT FACTOR 2017: 0.734

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.695
Source Normalized Impact per Paper (SNIP) 2017: 0.891

Mathematical Citation Quotient (MCQ) 2017: 0.62

See all formats and pricing
More options …
Volume 18, Issue 3


On the quantum periods of del Pezzo surfaces with ⅓ (1, 1) singularities

Alessandro Oneto / Andrea Petracci
Published Online: 2018-04-06 | DOI: https://doi.org/10.1515/advgeom-2017-0048


In earlier joint work with collaborators we gave a conjectural classification of a broad class of orbifold del Pezzo surfaces, using Mirror Symmetry. We proposed that del Pezzo surfaces X with isolated cyclic quotient singularities such that X admits a ℚ-Gorenstein toric degeneration correspond via Mirror Symmetry to maximally mutable Laurent polynomials f in two variables, and that the quantum period of such a surface X, which is a generating function for Gromov–Witten invariants of X, coincides with the classical period of its mirror partner f.

In this paper we give strong evidence for this conjecture. Contingent on conjectural generalisations of the Quantum Lefschetz theorem and the Abelian/non-Abelian correspondence, we compute many quantum periods for del Pezzo surfaces with 13(1, 1) singularities. Our computations also give strong evidence for the extension of these two principles to the orbifold setting.

Keywords: Gromov–Witten invariants; quantum cohomology; quantum period; del Pezzo surface

MSC 2010: 14J33; 14J45; 52B20; 14N35


  • [1]

    D. Abramovich, T. Graber, A. Vistoli, Algebraic orbifold quantum products. In: Orbifolds in mathematics and physics (Madison, WI, 2001), volume 310 of Contemp. Math., 1–24, Amer. Math. Soc. 2002. MR1950940 Zbl 1067.14055Google Scholar

  • [2]

    D. Abramovich, T. Graber, A. Vistoli, Gromov-Witten theory of Deligne-Mumford stacks. Amer. J. Math. 130 (2008), 1337–1398. MR2450211 Zbl 1193.14070CrossrefGoogle Scholar

  • [3]

    D. Abramovich, A. Vistoli, Compactifying the space of stable maps. J. Amer. Math. Soc. 15 (2002), 27–75. MR1862797 Zbl 0991.14007CrossrefGoogle Scholar

  • [4]

    M. Akhtar, T. Coates, A. Corti, L. Heuberger, A. Kasprzyk, A. Oneto, A. Petracci, T. Prince, K. Tveiten, Mirror symmetry and the classification of orbifold del Pezzo surfaces. Proc. Amer. Math. Soc. 144 (2016), 513–527. MR3430830 Zbl 06548665Web of ScienceGoogle Scholar

  • [5]

    M. Akhtar, T. Coates, S. Galkin, A. M. Kasprzyk, Minkowski polynomials and mutations. SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Paper 094, 17. MR3007265 Zbl 1280.52014Google Scholar

  • [6]

    M. Akhtar, A. Kasprzyk, Singularity content. Preprint. arXiv:1401.5458 [math.AG]Google Scholar

  • [7]

    A. Bertram, I. Ciocan-Fontanine, B. Kim, Gromov-Witten invariants for abelian and nonabelian quotients. J. Algebraic Geom. 17 (2008), 275–294. MR2369087 Zbl 1166.14035CrossrefWeb of ScienceGoogle Scholar

  • [8]

    L. A. Borisov, L. Chen, G. G. Smith, The orbifold Chow ring of toric Deligne-Mumford stacks. J. Amer. Math. Soc. 18 (2005), 193–215. MR2114820 Zbl 1178.14057CrossrefGoogle Scholar

  • [9]

    W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. MR1484478 Zbl 0898.68039CrossrefGoogle Scholar

  • [10]

    W. Chen, Y. Ruan, A new cohomology theory of orbifold. Comm. Math. Phys. 248 (2004), 1–31. MR2104605 Zbl 1063.53091CrossrefGoogle Scholar

  • [11]

    I. Ciocan-Fontanine, B. Kim, C. Sabbah, The abelian/nonabelian correspondence and Frobenius manifolds. Invent. Math. 171 (2008), 301–343. MR2367022 Zbl 1164.14012CrossrefWeb of ScienceGoogle Scholar

  • [12]

    T. Coates, The quantum Lefschetz principle for vector bundles as a map between Givental cones. Preprint. arXiv:1405.2893 [math.AG]Google Scholar

  • [13]

    T. Coates, A. Corti, S. Galkin, V. Golyshev, A. Kasprzyk, Mirror symmetry and Fano manifolds. In: European Congress of Mathematics, 285–300, Eur. Math. Soc., Zürich 2013. MR3469127 Zbl 1364.14032Google Scholar

  • [14]

    T. Coates, A. Corti, S. Galkin, A. Kasprzyk, Quantum periods for 3-dimensional Fano manifolds. Geom. Topol. 20 (2016), 103–256. MR3470714 Zbl 1348.14105CrossrefWeb of ScienceGoogle Scholar

  • [15]

    T. Coates, A. Corti, H. Iritani, H.-H. Tseng, Some applications of the mirror theorem for toric stacks. Preprint. arXiv:1401.2611 [math.AG]Google Scholar

  • [16]

    T. Coates, A. Corti, H. Iritani, H.-H. Tseng, Computing genus-zero twisted Gromov-Witten invariants. Duke Math. J. 147 (2009), 377–438. MR2510741 Zbl 1176.14009Web of ScienceCrossrefGoogle Scholar

  • [17]

    T. Coates, A. Corti, H. Iritani, H.-H. Tseng, A mirror theorem for toric stacks. Compos. Math. 151 (2015), 1878–1912. MR3414388 Zbl 1330.14093Web of ScienceCrossrefGoogle Scholar

  • [18]

    T. Coates, A. Corti, H. Iritani, H.-H. Tseng, Personal communication.Google Scholar

  • [19]

    T. Coates, A. Gholampour, H. Iritani, Y. Jiang, P. Johnson, C. Manolache, The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces. Math. Res. Lett. 19 (2012), 997–1005. MR3039825 Zbl 1287.14027CrossrefGoogle Scholar

  • [20]

    T. Coates, A. Givental, Quantum Riemann-Roch, Lefschetz and Serre. Ann. of Math. (2) 165 (2007), 15–53. MR2276766 Zbl 1189.14063Web of ScienceCrossrefGoogle Scholar

  • [21]

    A. Corti, L. Heuberger, Del Pezzo surfaces with 1 (1, 1) points. Manuscripta Math. 153 (2017), 71–118. MR3635974 Zbl 06714545CrossrefWeb of ScienceGoogle Scholar

  • [22]

    A. Corti, M. Reid, Weighted Grassmannians. In: Algebraic geometry, 141–163, De Gruyter 2002. MR1954062 Zbl 1060.14071Google Scholar

  • [23]

    B. Fantechi, E. Mann, F. Nironi, Smooth toric Deligne-Mumford stacks. J. Reine Angew. Math. 648 (2010), 201–244. MR2774310 Zbl 1211.14009Web of ScienceGoogle Scholar

  • [24]

    K. Fujita, K. Yasutake, Classification of log del Pezzo surfaces of index three. J. Math. Soc. Japan 69 (2017), 163–225. MR3597552 Zbl 06701588Web of ScienceCrossrefGoogle Scholar

  • [25]

    W. Fulton, Introduction to toric varieties, volume 131 of Annals of Mathematics Studies. Princeton Univ. Press 1993. MR1234037 Zbl 0813.14039Google Scholar

  • [26]

    A. Gholampour, H.-H. Tseng, On computations of genus 0 two-point descendant Gromov–Witten invariants. Michigan Math. J. 62 (2013), 753–768. MR3160540 Zbl 1306.53077Web of ScienceCrossrefGoogle Scholar

  • [27]

    A. B. Givental, Gromov–Witten invariants and quantization of quadratic Hamiltonians. Mosc. Math. J. 1 (2001), 551–568, 645. MR1901075 Zbl 1008.53072Google Scholar

  • [28]

    P. Hacking, Compact moduli of plane curves. Duke Math. J. 124 (2004), 213–257. MR2078368 Zbl 1060.14034CrossrefGoogle Scholar

  • [29]

    A. R. Iano-Fletcher, Working with weighted complete intersections. In: Explicit birational geometry of 3-folds, volume 281 of London Math. Soc. Lecture Note Ser., 101–173, Cambridge Univ. Press 2000. MR1798982 Zbl 0960.14027Google Scholar

  • [30]

    H. Iritani, Quantum cohomology and periods. Ann. Inst. Fourier (Grenoble) 61 (2011), 2909–2958. MR3112512 Zbl 1300.14055CrossrefGoogle Scholar

  • [31]

    Y. Jiang, The orbifold cohomology ring of simplicial toric stack bundles. Illinois J. Math. 52 (2008), 493–514. MR2524648 Zbl 1231.14002Google Scholar

  • [32]

    A. Kasprzyk, B. Nill, T. Prince, Minimality and mutation-equivalence of polygons. Forum Math. Sigma 5 (2017), e18, 48 pp. MR3686766CrossrefWeb of ScienceGoogle Scholar

  • [33]

    A. Kasprzyk, K. Tveiten, Maximally mutable Laurent polynomials. In preparation.Google Scholar

  • [34]

    B. Kim, Quantum hyperplane section theorem for homogeneous spaces. Acta Math. 183 (1999), 71–99. MR1719555 Zbl 1023.14028CrossrefGoogle Scholar

  • [35]

    J. Kollár, Singularities of the minimal model program, volume 200 of Cambridge Tracts in Mathematics. Cambridge Univ. Press 2013. MR3057950 Zbl 1282.14028Google Scholar

  • [36]

    J. Kollár, N. I. Shepherd-Barron, Threefolds and deformations of surface singularities. Invent. Math. 91 (1988), 299–338. MR922803 Zbl 0642.14008CrossrefGoogle Scholar

  • [37]

    Y.-P. Lee, Quantum Lefschetz hyperplane theorem. Invent. Math. 145 (2001), 121–149. MR1839288 Zbl 1082.14056CrossrefGoogle Scholar

  • [38]

    H.-H. Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre. Geom. Topol. 14 (2010), 1–81. MR2578300 Zbl 1178.14058CrossrefWeb of ScienceGoogle Scholar

  • [39]

    A. Vistoli, Intersection theory on algebraic stacks and on their moduli spaces. Invent. Math. 97 (1989), 613–670. MR1005008 Zbl 0694.14001CrossrefGoogle Scholar

About the article

Received: 2016-02-12

Revised: 2016-06-01

Published Online: 2018-04-06

Published in Print: 2018-07-26

Citation Information: Advances in Geometry, Volume 18, Issue 3, Pages 303–336, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2017-0048.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in