Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year


IMPACT FACTOR 2017: 0.734

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.695
Source Normalized Impact per Paper (SNIP) 2017: 0.891

Mathematical Citation Quotient (MCQ) 2017: 0.62

Online
ISSN
1615-7168
See all formats and pricing
More options …
Volume 18, Issue 3

Issues

Homogeneous spin Riemannian manifolds with the simplest Dirac operator

P. M. Gadea / J. C. González-Dávila
  • Departamento de Matemáticas, EstadĂ­stica e InvestigaciĂłn Operativa, Universidad de La Laguna, 38200-La Laguna, Tenerife, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. A. Oubiña
  • Departamento de XeometrĂ­a e TopoloxĂ­a, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-05 | DOI: https://doi.org/10.1515/advgeom-2018-0003

Abstract

We show the existence of nonsymmetric homogeneous spin Riemannian manifolds whose Dirac operator is like that on a Riemannian symmetric spin space. Such manifolds are exactly the homogeneous spin Riemannian manifolds (M, g) which are traceless cyclic with respect to some quotient expression M = G/K and reductive decomposition 𝔤 = 𝔨 ⊕ 𝔪. Using transversally symmetric fibrations of noncompact type, we give a list of them.

Keywords: Homogeneous (spin) Riemannian manifold; Dirac operator

MSC 2010: 53C30; 53C35; 34L40

References

  • [1]

    B. Ammann, C. Bär, The Dirac operator on nilmanifolds and collapsing circle bundles. Ann. Global Anal. Geom. 16 (1998), 221–253. MR1626659 Zbl 0911.58037CrossrefGoogle Scholar

  • [2]

    C. Bär, The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces. Arch. Math. (Basel) 59 (1992), 65–79. MR1166019 Zbl 0786.53030CrossrefGoogle Scholar

  • [3]

    A. Borel, F. Hirzebruch, Characteristic classes and homogeneous spaces. I. Amer. J. Math. 80 (1958), 458–538. MR0102800 Zbl 0097.36401CrossrefGoogle Scholar

  • [4]

    M. Cahen, S. Gutt, Spin structures on compact simply connected Riemannian symmetric spaces. In: Proceedings of the Workshop on Clifford Algebra, Clifford Analysis and their Applications in Mathematical Physics (Ghent, 1988), volume 62, 209–242, 1988. MR976428 Zbl 0677.53057Google Scholar

  • [5]

    P. M. Gadea, J. C. González-Dávila, J. A. Oubiña, Cyclic metric Lie groups. Monatsh. Math. 176 (2015), 219–239. MR3302156 Zbl 1321.53057CrossrefGoogle Scholar

  • [6]

    P. M. Gadea, J. C. González-Dávila, J. A. Oubiña, Cyclic homogeneous Riemannian manifolds. Ann. Mat. Pura Appl. (4) 195 (2016), 1619–1637. MR3537965 Zbl 1361.53043CrossrefWeb of ScienceGoogle Scholar

  • [7]

    J. C. González-Dávila, Harmonicity and minimality of distributions on Riemannian manifolds via the intrinsic torsion. Rev. Mat. Iberoam. 30 (2014), 247–275. MR3186939 Zbl 1292.58009CrossrefWeb of ScienceGoogle Scholar

  • [8]

    S. Helgason, Differential geometry, Lie groups, and symmetric spaces, volume 80 of Pure and Applied Mathematics. Academic Press 1978. MR514561 Zbl 0451.53038Google Scholar

  • [9]

    A. Ikeda, Formally self adjointness for the Dirac operator on homogeneous spaces. Osaka J. Math. 12 (1975), 173–185. MR0376962 Zbl 0317.58019Google Scholar

  • [10]

    S. Kobayashi, K. Nomizu, Foundations of differential geometry. Vol. II. Interscience Publ. 1969. MR0238225 Zbl 0175.48504Google Scholar

  • [11]

    H. B. Lawson, Jr., M.-L. Michelsohn, Spin geometry. Princeton Univ. Press 1989. MR1031992 Zbl 0688.57001Google Scholar

  • [12]

    F. Tricerri, L. Vanhecke, Homogeneous structures on Riemannian manifolds. Cambridge Univ. Press 1983. MR712664 Zbl 0509.53043Google Scholar

  • [13]

    J. A. Wolf, Spaces of constant curvature. AMS Chelsea Publishing, Providence, RI 2011. MR2742530 Zbl 1216.53003Google Scholar

About the article


Received: 2016-02-08

Revised: 2016-05-24

Published Online: 2018-04-05

Published in Print: 2018-07-26


Funding: The first and second authors have been supported by DGI (Spain) Project MTM2013-46961-P.


Citation Information: Advances in Geometry, Volume 18, Issue 3, Pages 289–302, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2018-0003.

Export Citation

© 2018 Walter de Gruyter GmbH Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in