Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year

IMPACT FACTOR 2017: 0.734

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.695
Source Normalized Impact per Paper (SNIP) 2017: 0.891

Mathematical Citation Quotient (MCQ) 2017: 0.62

See all formats and pricing
More options …
Volume 18, Issue 4


Rational curves on Del Pezzo manifolds

Adrian Zahariuc
Published Online: 2018-07-20 | DOI: https://doi.org/10.1515/advgeom-2018-0010


We exploit an elementary specialization technique to study rational curves on Fano varieties of index one less than their dimension, known as del Pezzo manifolds. First, we study the splitting type of the normal bundles of the rational curves. Second, we prove a simple formula relating the number of rational curves passing through a suitable number of points in the case of threefolds and the analogous invariants for del Pezzo surfaces.

Keywords: Rational curve; Fano variety; Fano variety of index n − 1; Del Pezzo surface; Lefschetz pencil; normal bundle; Gromov–Witten invariant; enumerative identity

MSC 2010: Primary 14H10; 14N35; Secondary 14N10; 14N25; 14D05


  • [1]

    A. Beauville, Quantum cohomology of complete intersections. Mat. Fiz. Anal. Geom. 2 (1995), 384–398. MR1484335 Zbl 0863.14029Google Scholar

  • [2]

    E. Brugallé, P. Georgieva, Pencils of quadrics and Gromov–Witten–Welschinger invariants of ℂP3. Math. Ann. 365 (2016), 363–380. MR3498914 Zbl 06587944Google Scholar

  • [3]

    D. F. Coray, Enumerative geometry of rational space curves. Proc. London Math. Soc. (3) 46 (1983), 263–287. MR693041 Zbl 0479.14023Google Scholar

  • [4]

    I. Coskun, J. Starr, Rational curves on smooth cubic hypersurfaces. Int. Math. Res. Not. (2009), no. 24, 4626–4641. MR2564370 Zbl 1200.14051Google Scholar

  • [5]

    D. Eisenbud, A. Van de Ven, On the normal bundles of smooth rational space curves. Math. Ann. 256 (1981), 453–463. MR628227 Zbl 0443.14015Google Scholar

  • [6]

    T. Fujita, On the structure of polarized manifolds with total deficiency one. I. J. Math. Soc. Japan 32 (1980), 709–725. MR589109 Zbl 0474.14017Google Scholar

  • [7]

    T. Fujita, Classification theories of polarized varieties. Cambridge Univ. Press 1990. MR1162108 Zbl 0743.14004Google Scholar

  • [8]

    L. Göttsche, R. Pandharipande, The quantum cohomology of blow-ups of ℙ2 and enumerative geometry. J. Differential Geom. 48 (1998), 61–90. MR1622601 Zbl 0946.14033Google Scholar

  • [9]

    K. Hulek, The normal bundle of a curve on a quadric. Math. Ann. 258 (1981/82), 201–206. MR641825 Zbl 0458.14011Google Scholar

  • [10]

    V. A. Iskovskih, Fano threefolds. I/II. Izv. Akad. Nauk SSSR Ser. Mat. 41/42 (1977/1978), 516–562, 717/506–549. MR463151 MR503430 Zbl 0382.14013 Zbl 0424.14012Google Scholar

  • [11]

    V. A. Iskovskih, Anticanonical models of three-dimensional algebraic varieties. J. Sov. Math. 13 (1980), 745–814. MR537685 Zbl 0428.14016Google Scholar

  • [12]

    J. Kollár, Examples of vanishing Gromov–Witten–Welschinger invariants. J. Math. Sci. Univ. Tokyo 22 (2015), 261–278. MR3329197 Zbl 1366.14049Google Scholar

  • [13]

    Z. Ran, Normal bundles of rational curves in projective spaces. Asian J. Math. 11 (2007), 567–608. MR2402939 Zbl 1163.14029Google Scholar

  • [14]

    M. Shen, On the normal bundles of rational curves on Fano 3-folds. Asian J. Math. 16 (2012), 237–270. MR2916363 Zbl 1253.14048Google Scholar

About the article

Received: 2016-08-08

Published Online: 2018-07-20

Published in Print: 2018-10-25

Funding: While doing this work, I was indirectly supported by the National Science Foundation grant DMS-1308244, “Nonlinear Analysis on Sympletic, Complex Manifolds, General Relativity, and Graphs”.

Citation Information: Advances in Geometry, Volume 18, Issue 4, Pages 451–465, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2018-0010.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in