[1]

M. Abdón, H. Borges, L. Quoos, Weierstrass points on Kummer extensions. arXiv 1308.2203v3 [math.AG]Google Scholar

[2]

N. Arakelian, S. Tafazolian, F. Torres, *On the spectrum for the genera of maximal curves over small fields*.To appear in Adv. Math. Commun.Google Scholar

[3]

R. Fuhrmann, A. Garcia, F. Torres, On maximal curves. *J. Number Theory* **67** (1997), 29–51. MR1485426 Zbl 0914.11036CrossrefWeb of ScienceGoogle Scholar

[4]

A. Garcia, H. Stichtenoth, C.-P. Xing, On subfields of the Hermitian function field. *Compositio Math*. **120** (2000), 137–170. MR1739176 Zbl 0990.11040CrossrefGoogle Scholar

[5]

G. van der Geer, E. W. Howe, K. E. Lauter, C. Ritzenthaler, *Tables of Curves with Many Points*, Korteweg–de Vries Instituut, Universiteit van Amsterdam 2009, www.manypoints.org

[6]

M. Giulietti, J. W. P. Hirschfeld, G. Korchmáros, F. Torres, Curves covered by the Hermitian curve. *Finite Fields Appl*. **12** (2006), 539–564. MR2257083 Zbl 1218.11064CrossrefGoogle Scholar

[7]

M. Giulietti, G. Korchmáros, A new family of maximal curves over a finite field. *Math. Ann*. **343** (2009), 229–245. MR2448446 Zbl 1160.14016CrossrefWeb of ScienceGoogle Scholar

[8]

J. W. P. Hirschfeld, G. Korchmáros, F. Torres, *Algebraic curves over a finite field*. Princeton Univ. Press 2008. MR2386879 Zbl 1200.11042Google Scholar

[9]

N. E. Hurt, *Many rational points*, volume 564 of *Mathematics and its Applications*. Kluwer 2003. MR2042828 Zbl 1072.11042Google Scholar

[10]

A. Kazemifard, A. R. Naghipour, S. Tafazolian, A note on superspecial and maximal curves. *Bull. Iranian Math. Soc*. **39** (2013), 405–413. MR3095333 Zbl 1298.11057Google Scholar

[11]

G. Korchmáros, F. Torres, On the genus of a maximal curve. *Math. Ann. 323* (2002), 589–608. MR1923698 Zbl 1018.11029CrossrefGoogle Scholar

[12]

G. Lachaud, Sommes d’Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis. *C. R. Acad. Sci. Paris Sér. I Math*. **305** (1987), 729–732. MR920053 Zbl 0639.14013Google Scholar

[13]

R. Lidl, H. Niederreiter, *Finite fields*, volume 20 of *Encyclopedia of Mathematics and its Applications*. Addison-Wesley Publ. Co., Reading, MA 1983. MR746963 Zbl 0554.12010Google Scholar

[14]

H.-G. Rück, H. Stichtenoth, A characterization of Hermitian function fields over finite fields. *J. Reine Angew. Math*. **457** (1994), 185–188. MR1305281 Zbl 0802.11053Google Scholar

[15]

J. Serre, *Résumé des cours de* 1983–1984. Ann. Collége de France (1984), 79–83.Google Scholar

[16]

S. A. Stepanov, *Arithmetic of algebraic curves*. Consultants Bureau, New York 1994. MR1321599 Zbl 0862.11036Google Scholar

[17]

H. Stichtenoth, *Algebraic function fields and codes*. Springer 2009. MR2464941 Zbl 1155.14022Google Scholar

[18]

S. Tafazolian, A. Teherán-Herrera, F. Torres, Further examples of maximal curves which cannot be covered by the Hermitian curve. *J. Pure Appl. Algebra* **220** (2016), 1122–1132. MR3414410 Zbl 06506977CrossrefWeb of ScienceGoogle Scholar

[19]

S. Tafazolian, F. Torres, On maximal curves of Fermat type. *Adv. Geom*. **13** (2013), 613–617. MR3181538 Zbl 06229235Web of ScienceGoogle Scholar

[20]

S. Tafazolian, F. Torres, On the curve *y*^{n} = *x*^{m} + *x* over finite fields. *J. Number Theory* **145** (2014), 51–66. MR3253292 Zbl 06343973CrossrefWeb of ScienceGoogle Scholar

[21]

J. Tate, Endomorphisms of abelian varieties over finite fields. *Invent. Math*. **2** (1966), 134–144. MR0206004 Zbl 0147.20303CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.