## Abstract

We study global obstructions to the eigenvalues of the Ricci tensor on a Riemannian 3-manifold. As a topological obstruction, we first show that if the 3-manifold is closed, then certain choices of the eigenvalues are prohibited: in particular, there is no Riemannian metric whose corresponding Ricci eigenvalues take the form (−*μ*, *f*, *f*), where *μ* is a positive constant and *f* is a smooth positive function. We then concentrate on the case when one of the eigenvalues is zero. Here we show that if the manifold is complete and its Ricci eigenvalues take the form (0, *λ*, *λ*), where *λ* is a positive constant, then its universal cover must split isometrically. If the manifold is closed, scalar-flat, and its zero eigenspace contains a unit length vector field that is geodesic and divergence-free, then the manifold must be flat. Our techniques also apply to the study of Ricci solitons in dimension three.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.