[1]

A. Aguglia, M. Giulietti, Blocking sets of certain line sets related to a conic. *Des. Codes Cryptogr*. **39** (2006), 397–405. MR2216279 Zbl 1172.51305CrossrefGoogle Scholar

[2]

A. Aguglia, G. Korchmáros, Blocking sets of nonsecant lines to a conic in PG(2, *q*), *q* odd. *J. Combin. Des*. **13** (2005), 292–301. MR2143981 Zbl 1078.51007CrossrefGoogle Scholar

[3]

A. Aguglia, G. Korchmáros, Blocking sets of external lines to a conic in PG(2, *q*), *q* odd. *Combinatorica* **26** (2006), 379–394. MR2260844 Zbl 1111.51007CrossrefGoogle Scholar

[4]

A. Aguglia, G. Korchmáros, A. Siciliano, Minimal covering of all chords of a conic in PG(2, *q*), *q* even. *Bull. Belg. Math. Soc. Simon Stevin* **12** (2005), 651–655. MR2241331 Zbl 1142.51006Google Scholar

[5]

P. Biondi, P. M. Lo Re, On blocking sets of external lines to a hyperbolic quadric in PG(3, *q*), *q* even. *J. Geom*. **92** (2009), 23–27. Zbl 1170.51004CrossrefGoogle Scholar

[6]

P. Biondi, P. M. Lo Re, L. Storme, On minimum size blocking sets of external lines to a quadric in PG(3, *q*). *Beiträge Algebra Geom*. **48** (2007), 209–215. MR2326410 Zbl 1121.51006Google Scholar

[7]

E. Boros, Z. Füredi, J. Kahn, Maximal intersecting families and affine regular polygons in PG(2, *q*). *J. Combin. Theory Ser. A* **52** (1989), 1–9. MR1008155 Zbl 0737.05003CrossrefGoogle Scholar

[8]

R. C. Bose, R. C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. *J. Combin. Theory Ser. A* **1** (1966), 96–104. MR0197215 Zbl 0152.18106CrossrefGoogle Scholar

[9]

P. Erdős, L. Lovász, *Problems and results on* 3-*chromatic hypergraphs and some related questions*. North-Holland 1975. MR0382050 Zbl 0315.05117Google Scholar

[10]

J. W. P. Hirschfeld, *Finite projective spaces of three dimensions*. Oxford Univ. Press 1985. MR840877 Zbl 0574.51001Google Scholar

[11]

F. Mazzocca, Blocking sets with respect to special families of lines and nuclei of *θ*_{n}-sets in finite *n*-dimensional projective and affine spaces. In: *Proceedings of the First International Conference on Blocking Sets* (*Giessen*, 1989), *Mitt. Math. Semin. Giessen* **201** (1991), 109–117. MR1126310 Zbl 0741.51014Google Scholar

[12]

G. E. Moorhouse, Incidence Geometry. Course notes 2017, available at http://ericmoorhouse.org/handouts/Incidence_Geometry.pdf

[13]

K. L. Patra, B. K. Sahoo, B. Sahu, Minimum size blocking sets of certain line sets related to a conic in PG(2, *q*). *Discrete Math*. **339** (2016), 1716–1721. MR3477101 Zbl 1338.51009Web of ScienceCrossrefGoogle Scholar

[14]

S. E. Payne, J. A. Thas, *Finite generalized quadrangles*. European Mathematical Society, Zürich 2009. MR2508121 Zbl 1247.05047Google Scholar

[15]

B. K. Sahoo, B. Sahu, Blocking sets of tangent and external lines to a hyperbolic quadric in PG(3, *q*), *q* even. *Proc. Indian Acad. Sci. Math. Sci*., to appear.Google Scholar

[16]

B. K. Sahoo, N. S. N. Sastry, Binary codes of the sympletic generalized quadrangle of even order. *Des. Codes Cryptogr*. **79** (2016), 163–170.CrossrefGoogle Scholar

[17]

Z. Weiner, T. Szőnyi, On the stability of sets of even type. *Adv. Math*. **267** (2014), 381–394. MR3269183 Zbl 1337.51003CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.