[1]

W. Abikoff, Degenerating families of Riemann surfaces. *Ann. of Math*. (2) **105** (1977), 29â€“44. MR0442293 Zbl 0347.32010CrossrefGoogleÂ Scholar

[2]

J. D. Achter, R. Pries, The integral monodromy of hyperelliptic and trielliptic curves. *Math. Ann*. **338** (2007), 187â€“206. MR2295509 Zbl 1129.11027CrossrefWebÂ ofÂ ScienceGoogleÂ Scholar

[3]

T. Ashikaga, M. Ishizaka, Classification of degenerations of curves of genus three via Matsumotoâ€“Montesinosâ€™ theorem. *Tohoku Math. J*. (2) **54** (2002), 195â€“226. MR1904949 Zbl 1094.14006CrossrefGoogleÂ Scholar

[4]

G. Bartolini, A. F. Costa, M. Izquierdo, On the connectivity of branch loci of moduli spaces. *Ann. Acad. Sci. Fenn. Math*. **38** (2013), 245â€“258. MR3076808 Zbl 1279.14032CrossrefGoogleÂ Scholar

[5]

G. Bartolini, A. F. Costa, M. Izquierdo, On the orbifold structure of the moduli space of Riemann surfaces of genera four and five. *Rev. R. Acad. Cienc. Exactas FĂs. Nat. Ser. A Math. RACSAM* **108** (2014), 769â€“793. MR3249974 Zbl 1297.14031GoogleÂ Scholar

[6]

L. Bers, On spaces of Riemann surfaces with nodes. *Bull. Amer. Math. Soc*. **80** (1974), 1219â€“1222. MR0361165 Zbl 0294.32017CrossrefGoogleÂ Scholar

[7]

M. Boileau, S. Maillot, J. Porti, *Three-dimensional orbifolds and their geometric structures*, volume 15 of *Panoramas et SynthĂ¨ses*. SociĂ©tĂ© MathĂ©matique de France, Paris 2003. MR2060653 Zbl 1058.57009GoogleÂ Scholar

[8]

S. A. Broughton, The equisymmetric stratification of the moduli space and the Krull dimension of mapping class groups. *Topology Appl*. **37** (1990), 101â€“113. MR1080344 Zbl 0747.32017CrossrefGoogleÂ Scholar

[9]

S. A. Broughton, Classifying finite group actions on surfaces of low genus. *J. Pure Appl. Algebra* **69** (1991), 233â€“270. MR1090743 Zbl 0722.57005CrossrefGoogleÂ Scholar

[10]

M. Cornalba, On the locus of curves with automorphisms. *Ann. Mat. Pura Appl*. (4) **149** (1987), 135â€“151. MR932781 Zbl 0649.14013CrossrefGoogleÂ Scholar

[11]

A. F. Costa, V. Gonz\â€™alez-Aguilera, Limits of equisymmetric 1-complex dimensional families of Riemann surfaces. *Math. Scand*. **121** (2017), 26â€“48. MR3708962 Zbl 06796586WebÂ ofÂ ScienceCrossrefGoogleÂ Scholar

[12]

A. F. Costa, M. Izquierdo, On the connectedness of the branch locus of the moduli space of Riemann surfaces of genus 4. *Glasg. Math. J*. **52** (2010), 401â€“408. MR2610983 Zbl 1195.30064CrossrefWebÂ ofÂ ScienceGoogleÂ Scholar

[13]

A. F. Costa, M. Izquierdo, H. Parlier, Connecting *p*-gonal loci in the compactification of moduli space. *Rev. Mat. Complut*. **28** (2015), 469â€“486. MR3344087 Zbl 1317.14062CrossrefWebÂ ofÂ ScienceGoogleÂ Scholar

[14]

P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus. *Inst. Hautes Ă©tudes Sci. Publ. Math*. no. **36** (1969), 75â€“109. MR0262240 Zbl 0181.48803CrossrefGoogleÂ Scholar

[15]

V. Gonz\â€™alez-Aguilera, R. E. RodrĂ guez, On principally polarized abelian varieties and Riemann surfaces associated to prisms and pyramids. In: *Lipaâ€™s legacy* (*New York*, 1995), volume 211 of *Contemp. Math*., 269â€“284, Amer. Math. Soc. 1997. MR1476992 Zbl 0926.32019GoogleÂ Scholar

[16]

W. Harvey, *Chabauty spaces of discrete groups*. Princeton Univ. Press 1974. MR0364629 Zbl 0313.32028GoogleÂ Scholar

[17]

J. H. Hubbard, S. Koch, An analytic construction of the Deligne-Mumford compactification of the moduli space of curves. *J. Differential Geom*. **98** (2014), 261â€“313. MR3263519 Zbl 1318.32019CrossrefGoogleÂ Scholar

[18]

H. Kimura, Classification of automorphism groups, up to topological equivalence, of compact Riemann surfaces of genus 4. *J. Algebra* **264** (2003), 26â€“54. MR1980684 Zbl 1027.30063CrossrefGoogleÂ Scholar

[19]

A. M. Macbeath, D. Singerman, Spaces of subgroups and Teichm\"uller space. *Proc. London Math. Soc*. (3) **31** (1975), 211â€“256. MR0397022 Zbl 0314.32012GoogleÂ Scholar

[20]

Y. Matsumoto, J. M. Montesinos-Amilibia, A proof of Thurstonâ€™s uniformization theorem of geometric orbifolds. *Tokyo J. Math*. **14** (1991), 181â€“196. MR1108165 Zbl 0732.57015CrossrefGoogleÂ Scholar

[21]

Y. Matsumoto, J. M. Montesinos-Amilibia, *Pseudo-periodic maps and degeneration of Riemann surfaces*. Springer 2011. MR2839459 Zbl 1239.57001GoogleÂ Scholar

[22]

R. Miranda, Graph curves and curves on *K*3 surfaces. In: *Lectures on Riemann surfaces* (*Trieste*, 1987), 119â€“176, World Sci. Publ., Teaneck, NJ 1989. MR1082353 Zbl 0800.14014GoogleÂ Scholar

## CommentsÂ (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.