[1]

E. Artal-Bartolo, Sur les couples de Zariski. *J. Algebraic Geom*. **3** (1994), 223–247. MR1257321 Zbl 0823.14013Google Scholar

[2]

E. Artal Bartolo, J. Carmona Ruber, J. I. Cogolludo Agustín, Braid monodromy and topology of plane curves. *Duke Math. J*. **118** (2003), 261–278. MR1980995 Zbl 1058.14053CrossrefGoogle Scholar

[3]

E. Artal Bartolo, J. I. Cogolludo, H. Tokunaga, A survey on Zariski pairs. In: *Algebraic geometry in East Asia—Hanoi 2005*, volume 50 of *Adv. Stud. Pure Math*., 1–100, Math. Soc. Japan, Tokyo 2008. MR2409555 Zbl 1141.14015Google Scholar

[4]

E. Artal Bartolo, H. Tokunaga, Zariski *k*-plets of rational curve arrangements and dihedral covers. *Topology Appl*. **142** (2004), 227–233. MR2071304 Zbl 1075.14013CrossrefGoogle Scholar

[5]

S. Bannai, A note on splitting curves of plane quartics and multi-sections of rational elliptic surfaces. *Topology Appl*. **202** (2016), 428–439. MR3464177 Zbl 1342.14080CrossrefWeb of ScienceGoogle Scholar

[6]

A. B. Coble, *Algebraic geometry and theta functions*, volume 10 of *American Mathematical Society Colloquium Publications*. Amer. Math. Soc. 1982. MR733252 JFM 55.0808.02Google Scholar

[7]

A. Degtyarev, On deformations of singular plane sextics. *J. Algebraic Geom*. **17** (2008), 101–135. MR2357681 Zbl 1131.14040CrossrefWeb of ScienceGoogle Scholar

[8]

A. Degtyarev, On the Artal-Carmona-Cogolludo construction. *J. Knot Theory Ramifications* **23** (2014), 1450028, 35pp. MR3233625 Zbl 1309.14025Web of ScienceGoogle Scholar

[9]

A. Dimca, *Singularities and topology of hypersurfaces*. Springer 1992. MR1194180 Zbl 0753.57001Google Scholar

[10]

B. Guerville-Ballé, J.-B. Meilhan, A linking invariant for algebraic curves. Preprint 2016, arXiv:1602.04916 [math.GT]Google Scholar

[11]

R. Hartshorne, *Algebraic geometry*. Springer 1977. MR0463157 Zbl 0367.14001Google Scholar

[12]

C. M. Jessop, *Quartic surfaces with singular points*. Cambridge University Press 1916. JFM 46.1501.03Google Scholar

[13]

M. Oka, Symmetric plane curves with nodes and cusps. *J. Math. Soc. Japan* **44** (1992), 375–414. MR1167373 Zbl 0767.14011CrossrefGoogle Scholar

[14]

I. Shimada, Lattice Zariski *k*-ples of plane sextic curves and *Z*-splitting curves for double plane sextics. *Michigan Math. J*. **59** (2010), 621–665. MR2745755 Zbl 1230.14041CrossrefGoogle Scholar

[15]

T. Shirane, A note on splitting numbers for Galois covers and *π*_{1}-equivalent Zariski *k*-plets. *Proc. Amer. Math. Soc*. **145** (2017), 1009–1017. MR3589301 Zbl 1358.14018Web of ScienceGoogle Scholar

[16]

H. Sumihiro, Elementary transformations of algebraic vector bundles. In: *Algebraic and topological theories (Kinosaki, 1984)*, 305–327, Kinokuniya, Tokyo 1986. MR1102263 Zbl 0800.14008Google Scholar

[17]

H. Tokunaga, Geometry of irreducible plane quartics and their quadratic residue conics. *J. Singul*. **2** (2010), 170–190. MR2763025 Zbl 1292.14022CrossrefGoogle Scholar

[18]

H. Tokunaga, A note on quadratic residue curves on rational ruled surfaces. In: *Galois-Teichmüller theory and arithmetic geometry*, volume 63 of *Adv. Stud. Pure Math*., 565–577, Math. Soc. Japan, Tokyo 2012. MR3051255 Zbl 1325.14028Google Scholar

[19]

O. Zariski, On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve. *Amer. J. Math*. **51** (1929), 305–328. MR1506719 JFM 55.0806.01CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.