[1]

V. I. Arnol’d, S. M. GuseĭZade, A. N. Varchenko, *Singularities of differentiable maps. Vol. I*. Birkhäuser 1985. MR777682 Zbl 0554.58001Google Scholar

[2]

J. W. Bruce, P. J. Giblin, *Curves and singularities*. Cambridge Univ. Press 1992. MR1206472 Zbl 0770.53002Google Scholar

[3]

J. W. Bruce, P. J. Giblin, F. Tari, Families of surfaces: focal sets, ridges and umbilics. *Math. Proc. Cambridge Philos. Soc*. **125** (1999), 243–268. MR1643790 Zbl 1024.53004CrossrefGoogle Scholar

[4]

S. Fujimori, K. Saji, M. Umehara, K. Yamada, Singularities of maximal surfaces. *Math. Z*. **259** (2008), 827–848. MR2403743 Zbl 1145.57026CrossrefWeb of ScienceGoogle Scholar

[5]

T. Fukui, M. Hasegawa, Fronts of Whitney umbrella—a differential geometric approach via blowing up. *J. Singul*. **4** (2012), 35–67. MR3044486 Zbl 1292.53005Google Scholar

[6]

T. Fukui, M. Hasegawa, Singularities of parallel surfaces.*Tohoku Math. J. (2)* **64** (2012), 387–408. MR2979288 Zbl 1257.53005CrossrefGoogle Scholar

[7]

M. Hasegawa, A. Honda, K. Naokawa, K. Saji, M. Umehara, K. Yamada, Intrinsic properties of surfaces with singularities. *Internat. J. Math*. **26** (2015), 1540008, 34. MR3338072 Zbl 1321.57039Google Scholar

[8]

M. Hasegawa, A. Honda, K. Naokawa, M. Umehara, K. Yamada, Intrinsic invariants of cross caps. *Selecta Math. (N.S.)* **20** (2014), 769–785. MR3217459 Zbl 1298.57024Web of ScienceCrossrefGoogle Scholar

[9]

G.-O. Ishikawa, Y. Machida, Singularities of improper affine spheres and surfaces of constant Gaussian curvature. *Internat. J. Math*. **17** (2006), 269–293. MR2215151 Zbl 1093.53067CrossrefGoogle Scholar

[10]

S. Izumiya, M. d. C. Romero Fuster, M. A. S. Ruas, F. Tari, *Differential geometry from a singularity theory viewpoint*. World Scientific, Hackensack, NJ 2016. MR3409029 Zbl 1369.53004Google Scholar

[11]

S. Izumiya, K. Saji, The mandala of Legendrian dualities for pseudo-spheres in Lorentz-Minkowski space and “flat” spacelike surfaces. *J. Singul*. **2** (2010), 92–127. MR2763021 Zbl 1292.53009CrossrefGoogle Scholar

[12]

S. Izumiya, K. Saji, M. Takahashi, Horospherical flat surfaces in hyperbolic 3-space. *J. Math. Soc. Japan* **62** (2010), 789–849. MR2648063 Zbl 1205.53065CrossrefWeb of ScienceGoogle Scholar

[13]

M. Kokubu, W. Rossman, K. Saji, M. Umehara, K. Yamada, Singularities of flat fronts in hyperbolic space. *Pacific J. Math*. **221** (2005), 303–351. MR2196639 Zbl 1110.53044CrossrefGoogle Scholar

[14]

M. Kokubu, W. Rossman, M. Umehara, K. Yamada, Flat fronts in hyperbolic 3-space and their caustics. *J. Math. Soc. Japan* **59** (2007), 265–299. MR2302672 Zbl 1120.53036CrossrefWeb of ScienceGoogle Scholar

[15]

L. d. F. Martins, K. Saji, Geometric invariants of cuspidal edges. *Canad. J. Math*. **68** (2016), 445–462. MR3484374 Zbl 1353.57027CrossrefGoogle Scholar

[16]

L. F. Martins, J. J. Nuño Ballesteros, Contact properties of surfaces in ℝ^{3} with corank 1 singularities. *Tohoku Math. J. (2)* **67** (2015), 105–124. MR3337965 Zbl 1320.58023Web of ScienceCrossrefGoogle Scholar

[17]

L. F. Martins, K. Saji, M. Umehara, K. Yamada, Behavior of Gaussian curvature and mean curvature near non-degenerate singular points on wave fronts. In: *Geometry and topology of manifolds*, volume 154 of *Springer Proc. Math. Stat*., 247–281, Springer 2016. MR3555987 Zbl 1347.53044Google Scholar

[18]

S. Murata, M. Umehara, Flat surfaces with singularities in Euclidean 3-space. *J. Differential Geom*. **82** (2009), 279–316. MR2520794 Zbl 1184.53015CrossrefGoogle Scholar

[19]

K. Naokawa, M. Umehara, K. Yamada, Isometric deformations of cuspidal edges. *Tohoku Math. J. (2)* **68** (2016), 73–90. MR3476137 Zbl 1350.57031CrossrefGoogle Scholar

[20]

R. Oset Sinha, F. Tari, On the flat geometry of the cuspidal edge. *Osaka J. Math*. **55** (2018), 393–421. MR3824838 Zbl 06927819Google Scholar

[21]

I. R. Porteous, The normal singularities of a submanifold.*J. Differential Geometry* **5** (1971), 543–564. MR0292092 Zbl 0226.53010CrossrefGoogle Scholar

[22]

I. R. Porteous, *Geometric differentiation*. Cambridge Univ. Press 2001. MR1871900 Zbl 1013.53001Google Scholar

[23]

K. Saji, Criteria for *D*_{4} singularities of wave fronts. *Tohoku Math. J. (2)* **63** (2011), 137–147. MR2788779 Zbl 1233.57017CrossrefWeb of ScienceGoogle Scholar

[24]

K. Saji, M. Umehara, K. Yamada, *A*_{k} singularities of wave fronts. *Math. Proc. Cambridge Philos. Soc*. **146** (2009), 731–746. MR2496355 Zbl 1173.53039CrossrefGoogle Scholar

[25]

K. Saji, M. Umehara, K. Yamada, The geometry of fronts.*Ann. of Math. (2)* **169** (2009), 491–529. MR2480610 Zbl 1177.53014CrossrefGoogle Scholar

[26]

K. Saji, M. Umehara, K. Yamada, The duality between singular points and inflection points on wave fronts. *Osaka J. Math*. **47** (2010), 591–607. MR2722375 Zbl 1209.57020Google Scholar

[27]

S. Shiba, M. Umehara, The behavior of curvature functions at cusps and inflection points. *Differential Geom. Appl*. **30** (2012), 285–299. MR2922645 Zbl 1250.53005Web of ScienceCrossrefGoogle Scholar

[28]

K. Teramoto, Parallel and dual surfaces of cuspidal edges.*Differential Geom. Appl*. **44** (2016), 52–62. MR3433975 Zbl 1339.53003CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.