Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Electrical Engineering

The Journal of Polish Academy of Sciences

4 Issues per year


CiteScore 2016: 0.71

SCImago Journal Rank (SJR) 2016: 0.238
Source Normalized Impact per Paper (SNIP) 2016: 0.535

Open Access
Online
ISSN
2300-2506
See all formats and pricing
More options …

Improvement of Microgrid Dynamic Performance under Fault Circumstances using ANFIS for Fast Varying Solar Radiation and Fuzzy Logic Controller for Wind System

Maziar Izadbakhsh / Alireza Rezvani / Majid Gandomkar
Published Online: 2014-12-11 | DOI: https://doi.org/10.2478/aee-2014-0038

Abstract

The microgrid (MG) technology integrates distributed generations, energy storage elements and loads. In this paper, dynamic performance enhancement of an MG consisting of wind turbine was investigated using permanent magnet synchronous generation (PMSG), photovoltaic (PV), microturbine generation (MTG) systems and flywheel under different circumstances. In order to maximize the output of solar arrays, maximum power point tracking (MPPT) technique was used by an adaptive neuro-fuzzy inference system (ANFIS); also, control of turbine output power in high speed winds was achieved using pitch angle control technic by fuzzy logic. For tracking the maximum point, the proposed ANFIS was trained by the optimum values. The simulation results showed that the ANFIS controller of grid-connected mode could easily meet the load demand with less fluctuation around the maximum power point. Moreover, pitch angle controller, which was based on fuzzy logic with wind speed and active power as the inputs, could have faster responses, thereby leading to flatter power curves, enhancement of the dynamic performance of wind turbine and prevention of both frazzle and mechanical damages to PMSG. The thorough wind power generation system, PV system, MTG, flywheel and power electronic converter interface were proposed by using Mat-lab/Simulink.

Keywords: MG; dynamic performance; photovoltaic; PMSG; ANFIS; droop control

References

  • [1] Strauss P., Engler A., AC coupled PV hybrid systems and MGs-state of the art and future trends. Proceedings, IEEE 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, pp. 2129-2134 (2003).Google Scholar

  • [2] Gao D., Jiang J., Qiao S.H., Comparing the use of two kinds of droop control under microgrid islanded operation mode. Archives of Electrical Engineering 62(2): 321-331 (2013).Google Scholar

  • [3] Lasseter R.H., Piagi P., MicroGrid: a conceptual solution. Power Electronics Specialists Conference, IEEE 35th Annual, Aachen, Germany; 6: 4285-4290 (2004).Google Scholar

  • [4] Xiao Zh., Wu J., Jenkins N., An Overview Of Microgrid Control. Intelligent Automation & Soft Computing 16: 199-212 (2010).Google Scholar

  • [5] Hayrettin C., Model of a photovoltaic panel emulator in MATLAB-Simulink. Turk. J. Elec. Eng. & Comp. Sci. 21: 301-308 (2013).Google Scholar

  • [6] Salas V., Olias E., Barrado A., Lazaro A., Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems, Solar Energy Materials and Solar Cells 90: 1555-1578 (2006).CrossrefGoogle Scholar

  • [7] Villalva M.G., Gazoli J.R., Filho E., Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. Power Electronics IEEE Transactions on 24: 1198-1208 (2009).Web of ScienceGoogle Scholar

  • [8] Chu C.C., Chen C.L., Robust maximum power point tracking method for photovoltaic cells: a sliding mode control approach. Solar Energy 83: 1370-1378 (2009).Web of ScienceCrossrefGoogle Scholar

  • [9] Liu FF., Duan S., Liu B., Kang Y.A., Variable step size INC MPPT method for PV systems. IEEE Trans. Industrial Electronics 55: 622-2628 (2008).Google Scholar

  • [10] Altin N., Type-2 Fuzzy Logic Controller Based Maximum Power Point Tracking in Photovoltaic Systems. Advances in Electrical and Computer Engineering 13: 65-70 (2013).Web of ScienceGoogle Scholar

  • [11] Gasbaoui B., Abdelkader C.H., Adellah L., Multi-input multi-output fuzzy logic controller for utility electric vehicle. Archives of Electrical Engineering 60: 239-256 (2011).Google Scholar

  • [12] Veerachary M., Senjyu T., Uezato K., Neural-network-based maximum-power-point tracking of coupled inductor interleaved-boost-converter-supplied PV system using fuzzy controller. IEEE Transactions on Industria lElectronics 50: 749-758 (2003).Google Scholar

  • [13] Rai A., K, Kaushika N.D., Singh B., Agarwal N., Simulation model of ANN based maximum power point tracking controller for solar PV system. Solar Energy Materials and Solar Cells 95: 773-778 (2011).CrossrefWeb of ScienceGoogle Scholar

  • [14] Cernazanu C., Training Neural Networks Using Input Data Characteristics. Advances in Electrical and Computer Engineering 8: 65-70 (2008).CrossrefWeb of ScienceGoogle Scholar

  • [15] Esram T, Chapman P.L., Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion 22(2): 439-449 (2007).Web of ScienceCrossrefGoogle Scholar

  • [16] Lee S., Kim J., Cha H., Design and Implementation of Photovoltaic Power Conditioning System using a Current-based Maximum Power Point Tracking. Journal of Electrical Engineering & Technology 5: 606-613 (2010).Web of ScienceGoogle Scholar

  • [17] Hiyama T., Kitabayashi K., Neural Network Based Estimation of Maximum Power Generation from PV Module Using Environment Information, IEEE Transaction on Energy Conversion 12: 241-247 (1997).CrossrefGoogle Scholar

  • [18] Aldobhani A.M.S., John R., Maximum power point tracking of PV system using ANFIS prediction and fuzzy logic tracking. IEEE Proceedings of the international multi conference of engineer is and computer scientists IMECS, Hong Kong, pp. 19-21 (2008).Google Scholar

  • [19] Abu-Ruba H., Iqbalbc A., Ahmeda Sk. M., Adaptive neuro-fuzzy inference system-based maximum power point tracking of solar PV modules for fast varying solar radiations, International Journal of Sustainable Energy 31: 383-398 (2012).Google Scholar

  • [20] Afghoul H., Krim F., Chikouche S., Increase the photovoltaic conversion efficiency using Neurofuzzy control applied to MPPT. IEEE Renewable and Sustainable Energy Conference IRSEC, Ouarzazate, pp. 348-353 (2013).Google Scholar

  • [21] Hayatdavudi M., Saeedimoghadam M., Nabavi M.H., Adaptive Control of Pitch Angle of Wind Turbine using a Novel Strategy for Management of Mechanical Energy Generated by Turbine in Different Wind Velocities. Journal of Electrical Engineering & Technology 8: 863-871 (2013).Web of ScienceGoogle Scholar

  • [22] Pourfar I., Shayanfar H.A., Shanechi H.M., Naghshbandy A.H., Controlling PMSG-based wind generation by a locally available signal to damp power system inter-area oscillations. International Transactions On Electrical Energy Systems 23: 1156-1171 (2013).Web of ScienceGoogle Scholar

  • [23] Yuan Lo K., Chen Y., Chang Y., MPPT Battery Charger for Stand-Alone Wind Power System, IEEE Transactions on Power Electronics 26:1631-1638 (2011).Google Scholar

  • [24] Gaurav N., Kaur A., Performance Evaluation of Fuzzy Logic and PID Controller by Using MATLAB/Simulink, International Journal of Innovative Technology and Exploring Engineering (IJITEE) 1: 84-88 (2012).Google Scholar

  • [25] Lingfeng X., Xiyun Y., Xinran L., Daping X., Based on adaptive fuzzy sliding mode controller. IEEE in Intelligent Control and Automation WCICA 7th World Congress on China, Chongqing, pp. 2970-2975 (2008).Google Scholar

  • [26] Amendola C.A.M., Gonzaga D.P., Fuzzy-Logic Control System of a Variable-Speed Variable-Pitch Wind-Turbine and a Double-Fed Induction Generator. IEEE Intelligent Systems Design and Applications, Seventh International Conference, Brazil, pp. 252-257 (2007).Google Scholar

  • [27] Senjyu T., Sakamoto R., Urasaki N., Funabashi T., Sekine H., Output power leveling of wind farm using pitch angle control with fuzzy neural network. IEEE Power Engineering Society General Meeting, Japan, pp. 1-8 (2006).Google Scholar

  • [28] Yao X., Guo Ch., Xing Z., Li Y., Liu Sh., Variable Speed Wind Turbine Maximum Power Extraction Based on Fuzzy Logic Control. IEEE International Conference on Intelligent Human-Machine Systems and Cybernetics, China, pp. 202-205 (2009).Google Scholar

  • [29] Gaonkar D.N., Patel R.N., Pillai G.N., Dynamic Model of MTG Generation System for Grid-connected/Islanding Operation. IEEE International Conference, India, pp. 305-310 (2006).Google Scholar

  • [30] Qi H.Y., Yi F.B., Feng S.J., Simulation research on the microgrid with flywheel energy storage system. Power System Protection and Control 39: 83-87 (2011).Google Scholar

  • [31] Li W., Yun-li ZH., Wei-dong L., Simulation System of Flywheel Energy Storage. Power System and Clean Energy 26: 102-106 (2010).Google Scholar

  • [32] Zhaoxia X., Chengshan W., Shouxiang W., Small-signal Stability Analysis of MG Containing Multiple Micro Sources. Automation of Electric Power Systems 33: 81-85 (2009).Google Scholar

  • [33] Kanellos F., Tsouchnikas A.I., Hatziargyriou N.D., Micro-grid simulation during grid-connected and islanded modes of operation. IPST Presented at the Int. Conf. Power Systems Transients (IPST), Montreal, Canada, IPST, pp. 105-113 (2005).Google Scholar

  • [34] Lopes J., Moreira C.L., Madureira A.G., Defining control strategies for micro grids islanded operation, IEEE Trans. Power Syst. 21: 916-924 (2006).CrossrefGoogle Scholar

  • [35] Katiraei F., Irvani M., Lehn P., Micro-grid autonomous operation during and subsequent to islanding process, IEEE Trans. Power Del. 20: 248-257 (2005).CrossrefGoogle Scholar

  • [36] Zamora R., Srivastava A.K., Controls for Micro-grids with Storage: Review, Challenges, and Research Needs. Elsevier 14: 2009-2018 (2010).Google Scholar

  • [37] Moradian M., Tabatabaei F.M., Moradian S., Modeling, Control & Fault Management of MGs. Smart Grid and Renewable Energy 4: 99-112 (2013).Google Scholar

  • [38] Kamel R.M., Chaouachi A., Nagasaka K., Detailed Analysis of Micro-Grid Stability during Islanding Mode under Different Load Conditions, Engineering 3: 508-516 (2011).CrossrefGoogle Scholar

  • [39] Vincheh R.M., Kargar A., Markadeh Gh.A., A Hybrid Control Method for Maximum Power Point Tracking (MPPT) in Photovoltaic Systems, Arabian J. Sci. Eng. 39:4715-4725 (2014).Google Scholar

  • [40] Ramaprabha R., Mathur B.L., Intelligent Controller based Maxi-mum Power Point Tracking for Solar PV System. Intern. J. Comp. Appl. 12(10): 37-41 (2011).Google Scholar

  • [41] Yang J, Honavar V., Feature subset selection using a genetic algorithm. IEEE Intelligent Systems 13 (2): 44-49 (1998).CrossrefGoogle Scholar

  • [42] Oguz Y., Guney I., Adaptive neuro-fuzzy inference system to improve the power quality of variable-speed wind power generation system. Turk. J. Elec. Eng. & Comp. Sci. 18: 625-645 (2010).Web of ScienceGoogle Scholar

  • [43] Arifujjaman Md., Modeling, Simulation and Control of Grid Connected Permanent Magnet Generator (PMG)-based Small Wind Energy Conversion System. IEEE Electrical Power & Energy Conference, Canada, pp. 1-6 (2010).Google Scholar

  • [44] Rosyadi M., Muyeen S.M., Takahashi R., Tamura J., Transient stability enhancement of variable speed permanent magnet wind generator using adaptive pi-fuzzy controller, Proceedings, Trondheim Power Tech. Conf., Germany, pp. 1-6 (2011).Google Scholar

  • [45] Blaabjerg F., Teodorescu R., Liserre M., Tim-bus A.V., Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Transactions on Industrial Electronics 53: 1398-1409 (2006).CrossrefGoogle Scholar

About the article

Received: 2014-05-20

Revised: 2014-08-11

Published Online: 2014-12-11


Citation Information: Archives of Electrical Engineering, Volume 63, Issue 4, Pages 551–578, ISSN (Online) 2300-2506, DOI: https://doi.org/10.2478/aee-2014-0038.

Export Citation

© 2014 Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in