Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Facultatis Educationis Physicae Universitatis Comenianae

2 Issues per year

Open Access
Online
ISSN
2585-8777
See all formats and pricing
More options …

VO2max levels as a pointer of physiological training status among soccer players

Zerf Mohammed / Boras Fatima Zohar / Benali Gourar / Bengoua Ali / Mokkedes Moulay Idriss
Published Online: 2018-11-22 | DOI: https://doi.org/10.2478/afepuc-2018-0010

Abstract

The purpose of the current study was to evaluate the Aerobic endurance training as indicators of physiological training status among male soccer players. A total of 138 well-trained first division soccer players under 18 years were tested. Testing was based on the Cooper test as a one of simple tests to estimate VO2max. BMI and BFP as valued anthropometric measurements to control body change relative to maximal oxygen consumption during dynamic exercise with large muscle groups benefit training time soccer training experience. Performance in this experience was based on the subjection that 60 ml/kg/min of VO2max is the minimum fitness requirement for male soccer players to play at the elite level. Admit in this study as a protocol to categorise our sample into two groups (up and under the range VO2max ± 60 ml/kg/min) and it was based on statistics applied and the design used. Our results highlighted the importance of aerobic performance up to 60 ml/kg/min as the minimum fitness requirement to enhance the players' aerobic capacity allied to maximal heart rate relative to BFP levels as a better parameter in comparison with BMI for the prediction of low VO2max concomitant to the physiological training status as requests soccer performance demand.

Keywords: BFP; BMI; VO2max; physiological; soccer player

References

  • 1. Almeida, A.M.D., P.R. Santos Silva, A. Pedrinelli & A. J. Hernandez, 2018. Aerobic fitness in professional soccer players after anterior cruciate ligament reconstruction. PLoS ONE, 3, e0194432. doi:CrossrefGoogle Scholar

  • 2. Anjali, N. Shete, Smita S Bute & P.R. Deshmukh, 2014. A Study of VO2max and Body Fat Percentage in Female Athletes. J Clin Diagn Res. 8(12), BC01-BC03. doi:CrossrefGoogle Scholar

  • 3. Cardoso De Araújo, M., C. Baumgart, C. T. Jansen, J. Freiwald & M. W. Hoppe, 2018. Sex Differences in Physical Capacities of German Bundesliga Soccer Players. J Strength Cond Res, https://www.ncbi.nlm.nih.gov/pubmed/29927885. doi:CrossrefGoogle Scholar

  • 4. Mayorga-Vega, D., R. Bocanegra-Parrilla, M. Ornelas & J. Viciana, 2016. Criterion-Related Validity of the Distance- and Time-Based Walk/Run Field Tests for Estimating Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. PLoS One. 11(3), e0151671. doi:CrossrefGoogle Scholar

  • 5. Deurenberg, P., J. A. Westrate & J. C. Seidell, 1991. Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br J Nutr. 65, 105-114.Google Scholar

  • 6. Draper, N. & H. Marshall, 2014. Exercise Physiology: For Health and Sports Performance. USA: Routledge.Google Scholar

  • 7. De Andrade Gonçalves, A. C. & D. A. Santos Silva, 2016. Factors associated with low levels of aerobic fitness among adolescents. Revista Paulista de Pediatria, 2. doi:CrossrefGoogle Scholar

  • 8. Fessi, M. S., N. Zarrouk, C. Filetti, H. Rebai, M. Elloumi & W. Moalla, 2016. Physical and anthropometric changes during pre- and in-season in professional soccer players. J Sports Med Phys Fitness. 56(10), 1163-1170. doi:CrossrefGoogle Scholar

  • 9. Fortuna, M., J. Szczurowski, T. Zabłocki, D. Pałasz & I. Demczyszak, 2018. Estimation of evaluation some spirometric’s parameters of football players during preparation period. Journal of Education, Health and Sport. 8(6), 69-79. doi:CrossrefGoogle Scholar

  • 10. Goto, Y., H. Yokokawa, H. Fukuda, T. Naito, T. Hisaoka et al., 2015. Body mass index and waist circumference are independent risk factors for low vital capacity among Japanese participants of a health checkup: a single-institution cross-sectional study. Environ Health Prev Med, Body mass index and waist circumference are independent risk factors for low vital capacity among Japanese participants 20, 108-115.Google Scholar

  • 11. Hassane, Z., G. E. Lemoal, P. Wong, G. O. Benounis, G. C. Castagna, G. C. Duluc, G. A. L. Owen & B. Drust, 2013. Physiological Responses of General vs. Specific Aerobic Endurance Exercises in Soccer. Asian J Sports Med. Sep; 4(3), 213-220. Retrieved from <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880666/>Google Scholar

  • 12. Hoff, J., U. Wisløff, L. C. Engen, O. J. Kemi & J. Helgerud, 2002. Soccer specific aerobic endurance training. British Journal of Sports Medicine (BJSM). 36(3), 218-221. doi:CrossrefGoogle Scholar

  • 13. James, J. D., M. O. Robin, L. S. Claire, A. V. Andrea & P. Rodney, 2016. Associations between anthropometric characteristics and physical performance in male law enforcement officers: a retrospective cohort study. Ann Occup Environ Med. 28(26), 1-7. doi:CrossrefGoogle Scholar

  • 14. John, G. & H. Juliette, 2009. Exercise Therapy: Prevention and Treatment of Disease. US: Wiley.com.Google Scholar

  • 15. Mcmillan, J., R. HELGERUD, R. MACDONALD & J. HOFF, 2005. Physiological adaptations to soccer-specific endurance training in professional youth soccer players. British Journal of Sports Medicine. 39(5), 273-277. doi:CrossrefGoogle Scholar

  • 16. Laxmi, C. C., I. B. Udaya & S. Vinutha Shankar, 2014. Effect of body mass index on cardiorespiratory fitness in young healthy males. International Journal of Scientific and Research Publications. 4(2), 1-4. Retrieved from www.ijsrp.org.Google Scholar

  • 17. Skidmore-Roth, L., 2015. Mosby's Drug Guide for Nursing Students, with 2016 Update. US: Elsevier Health Sciences.Google Scholar

  • 18. Zerf, M., 2018. Aerobic Fitness as a Superior Predictor Factor to Estimate the Optional Body Weight among the Soccer Players. 2:. J. Hum Bio & Health Edu, 2, 010. Retrieved from https://bioaccent.org/humanbiology-healtheducation/humanbiologyhealtheducation10.php.Google Scholar

  • 19. Coelho E Silva, M., J., J. A. Figueiredo, M. T. Elferink-Gemser, & R. M. Malina, 2016. Assessment of biological maturation in adolescent athletes: application of different methods with soccer and hockey players. Portuguese: University the Colomba.Google Scholar

  • 20. Mohammed, Z., H. Abelatif, M. Mokhtar & B. Ali, 2016. Height versus Weight which Cassel Parameter Determine Pulmonary Functions Fitness among the Algerians Soccer Players. J Pulm Respir Med. 6(353). doi:CrossrefGoogle Scholar

  • 21. Mondal, H. & S. P. Mishra, 2017. Effect of BMI, Body Fat Percentage and Fat Free Mass on Maximal Oxygen Consumption in Healthy Young Adults. J Clin Diagn Res. 11(6), CC17-CC20. doi:CrossrefGoogle Scholar

  • 22. Koutlianos, N., E. Dimitros, T. Metaxas, M. Cansiz, A. S. Deligiannis & E. Kouidi, 2013. Indirect estimation of VO2max in athletes by ACSM’s equation: valid or not? Hippokratia. 17(2), 136-140.Google Scholar

  • 23. Paul, I, R. Don, M. Kimberley et al., 2016. Nutrition. US: Jones and Bartlett Publishers.Google Scholar

  • 24. Radovanović, S., S. Kocić, G. Gajović, S. Radević, M. Milosavljević & J. Nićiforović, 2014. The impact of body weight on aerobic capacity. Med Glas (Zenica). 11(1), 204-9. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24496365.Google Scholar

  • 25. Requena B, 2017. Off-Season Effects on Functional Performance, Body Composition, and Blood Parameters in Top-Level Professional Soccer Players. J Strength Cond Res. 31(4), 939-946. doi:CrossrefGoogle Scholar

  • 26. Hoeger, S. A., 2015. Principles and Labs for Fitness and Wellness. US: Cengage Learning, Inc.Google Scholar

  • 27. Tauseef, N, R. Nadeema & Q. Ouber, 2015. Assessment of cardiovascular fitness [VO2 max] among medical students by Queens College step test. International Journal of Biomedical and Advance Research. 6(5), 418-421. doi:CrossrefGoogle Scholar

  • 28. Welk, G. & M. D. Meredith, 2010. Fitnessgram and Activitygram Test Administration Manual-Updated 4th Edition. US: Human Kinetics.Google Scholar

  • 29. Thevenet, D., M. Tardieu, H. Zouhal et al., 2007. Influence of exercise intensity on time spent at high percentage of maximal oxygen uptake during an intermittent session in young endurance-trained athletes. Eur J Appl Physiol. 102(1), 19-26. doi:CrossrefGoogle Scholar

  • 30. Scribbans, T. D., S. Vecsey, P. B. Hankinson, W. S. Foster & B. J. Gurd, 2016. The Effect of Training Intensity on VO2max in Young Healthy Adults: A Meta- Regression and Meta-Analysis. Int J Exerc Sci, 9(2), 230-247. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836566/.Google Scholar

  • 31. Hoeger, W.K. & S. A. Hoeger, 2016. Lifetime Physical Fitness and Wellness: A Personalized Program. US: CengageBrain.com.Google Scholar

  • 32. Zerf, M., 2017. Influence of maximum heart rate predicts method on appropriate exercise intensity via Algerian soccer training programs. Turkish Journal of Sport and Exercise, 254 - 260. doi:CrossrefGoogle Scholar

About the article

Published Online: 2018-11-22

Published in Print: 2018-11-01


Citation Information: Acta Facultatis Educationis Physicae Universitatis Comenianae, Volume 58, Issue 2, Pages 112–121, ISSN (Online) 2585-8777, DOI: https://doi.org/10.2478/afepuc-2018-0010.

Export Citation

© 2018 Zerf Mohammed, et al., published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in