Jump to ContentJump to Main Navigation
Show Summary Details
More options …

European Pharmaceutical Journal

Acta Facultatis Pharmaceuticae Universitatis Comenianae (formerly)

2 Issues per year


CiteScore 2016: 0.28

SCImago Journal Rank (SJR) 2015: 0.195
Source Normalized Impact per Paper (SNIP) 2015: 0.202

Open Access
Online
ISSN
2453-6725
See all formats and pricing
More options …

Antimicrobial susceptibility and immunomodulatory properties of lamb isolate of lactobacillus mucosae, new probiotic candidate

Andrea Bilková
  • Corresponding author
  • Comenius University in Bratislava, Faculty of Pharmacy, Department of Cell and Molecular Biology of Drugs, Bratislava, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martina Dubničková
  • Comenius University in Bratislava, Faculty of Pharmacy, Department of Cell and Molecular Biology of Drugs, Bratislava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hana Kiňová Sepová
  • Comenius University in Bratislava, Faculty of Pharmacy, Department of Cell and Molecular Biology of Drugs, Bratislava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-31 | DOI: https://doi.org/10.2478/afpuc-2013-0017

Abstract

In the process of selecting a new probiotic candidate, several bacteria were isolated from the stomach mucosa of a lamb. Among them, three lactobacilli strains were identified and partially characterised. The strain, Lactobacillus mucosae D, showed several characteristics appropriate to the probiotics. In this study, we have focused on the further characterisation of L. mucosae D and testing of its ability to modulate metabolic and immunomodulatory activities of human mononuclear cells in vitro. L. mucosae D is resistant to antibiotics, like penicillin G, oxacillin, vancomycin and chemotherapeutics ofloxacin and ciprofloxacin. In in vitro conditions, L. mucosae D caused a significant increase in phagocytic activity and index (relative activities 1.05 and 1.44, respectively) of human monocytes. It decreased bactericidal activities of monocytes against Escherichia coli (relative activity 0.73) and Staphylococcus aureus (relative activity 0.36), whereas, candidacidal activity was enhanced (relative activity 1.15). Metabolic activities, lysozyme and peroxidase activity, of mononuclear cells were not changed or increased, respectively. L. mucosae D displayed the ability to enhance production of pro-inflammatory cytokine, IL-1β, in monocytes in vitro (relative activity 2.60). Therefore, we state that lamb isolate, L. mucosae D, has the required attributes for being a potential probiotic candidate.

Slovak abstract

S cieľom ziskať novych probiotickych kandidatov, bolo zo žaludočnej sliznice jahňaťa izolovanych niekoľko bakterii. Tri z nich boli identifikovane ako laktobacily a boli čiastočne charakterizovane. Kmeň Lactobacillus mucosae D preukazal v predošlych experimentoch niekoľko vlastnosti typickych pre probiotika. V tejto praci sme sa zamerali na ďalšiu charakterizaciu Lactobacillus mucosae Da sledovanie jeho schopnosti modulovať metabolicke a imunomodulačne vlastnosti ľudskych mononukleovych buniek v podmienkach in vitro. Zistili sme, že L. mucosae D je rezistentny voči nasledujucim antibiotikam: penicilin G, oxacilin, vankomycin a chemoterapeutikam ofloxacin a ciprofloxacin. V podmienkach in vitro L. mucosae D sposobil signifikantne zvyšenie fagocytovej aktivity a indexu (relativne aktivity 1,05 a 1,44) ľudskych monocytov. Baktericidnu aktivitu monocytov voči Escherichia coli znižil (relativna aktivita 0,73) rovnako ako aktivitu voči Staphylococcus aureus (relativna aktivita 0,36), zatiaľ čo kandidacidnu aktivitu zvyšil (relativna aktivita 1,15). Z metabolickych aktivit mononukleovych buniek sme u lyzozymovej aktivity nepozorovali žiadnu zmenu, naopak peroxidazova aktivita bola zvyšena. L. mucosae D preukazal schopnosť potencovať produkciu prozapaloveho cytokinu IL-1β monocytmi v podmienkach in vitro (relativna aktivita 2,60). Na zaklade ziskanych vysledkov považujeme jahňaci izolat L. mucosae D za potencialne probioticky.

Keywords: Lactobacillus mucosae; probiotics; immunomodulation

Klúcové slová : Lactobacillus mucosae; probiotiká; imunomodulácia

  • [1] Ashraf R, Shah NP. Antibiotic resistance of probiotic organisms and safety of probiotic dairy products. Int Food Res J. 2011;18:837-853.Google Scholar

  • [2] Aureli P, Capurso L, Castellazzi AM. et al. Probiotics and health: An evidence-based review. Pharmacol Res. 2011;63:366-376.CrossrefPubMedGoogle Scholar

  • [3] Begley M, Hill C, Gahan CGM. Bile salt hydrolase activity in probiotics. Appl Environ Microbiol. 2006;72:1729-1738.CrossrefPubMedGoogle Scholar

  • [4] Bilkova A, Kiňova Sepova H, Bilka F, Bukovsky M, Balažova A, Bezakova L. Identification of newly isolated lactobacilli from the stomach mucus of lamb. Acta Facult Pharm Univ Comenianae. 2008;55:64-72.Google Scholar

  • [5] Bilkova A, Kiňova Sepova H, Bukovsky M, Bezakova L. Antibacterial potential of lactobacilli isolated from a lamb.Vet Med. 2011;56:319-324.Google Scholar

  • [6] Boyum A. Isolation of leucocytes from human blood. Further observations. Methylcellulose dextran and ficoll as erythrocyte aggregating agents. Scand J Clin Lab Invest Suppl. 1968;97:31-50.Google Scholar

  • [7] Caballero-Franco C, Keller K, De Simone C, Chadee K. The VS#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2007;2921:315-322.Google Scholar

  • [8] Clementi F, Aquilanti L. Recent investigations and updated criteria for the assessment of antibiotic resistance in food lactic acid bacteria. Anaerobe 2011, doi:10.1016/j. anaerobe.2011.03.021.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [9] Damaskos D, Kolios G. Probiotics and prebiotics in inflammatory bowel disease: Microflora ‘on the scope’.Br J Clin Pharmacol. 2008;65:453-467.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [10] Delgado S, Florez AB, Mayo B. Antibiotic susceptibility of Lactobacillus and Bifidobacterium: species from the human gastrointestinal tract. Curr Microbiol. 2005;50:202-207.CrossrefPubMedGoogle Scholar

  • [11] Duškova M, Karpiškova R. Antimicrobial resistance of lactobacilli isolated from food. Czech J Food Sci. 2013;31:27-32.Google Scholar

  • [12] FAO/WHO Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. (http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf) Published October2001. Accessed April 13, 2012.Google Scholar

  • [13] FAO/WHO Guidelines for the evaluation of probiotics in food. (http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf ) Published April 30 and May 1,2002. Accessed April 13, 2012.Google Scholar

  • [14] Helwig U, Lammers KM, Rizzello F et al. Lactobacilli, bifidobacteria and E. coli Nissle induce pro-and anti-inflammatory cytokines in peripheral blood mononuclear cells.World J Gastroenterol. 2006;12:5978-5986.Google Scholar

  • [15] Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol. 2013;6:39-51.CrossrefGoogle Scholar

  • [16] Isolauri E, Sutas Y, Kankaanpaa P, Arvilommi H, Salminen S. Probiotics: Effects on immunity. Am J Clin Nutr. 2001;73(2 suppl):S 444-S 450.Google Scholar

  • [17] Kiňova Sepova H, Dubničkova M, Bilkova A, Bukovsky M, Bezakova L. Identification and biological activity of potential probiotic bacterium isolated from the stomach mucus of breast-fed lamb. Braz J Microbiol. 2011;42:1188-1196.Google Scholar

  • [18] Klare I, Konstabel C, Muller-Bertling S et al. Evaluation of new broth media for microdilution antibiotic susceptibility testing of lactobacilli, pediococci, lactococci, and bifidobacteria.Appl Environ Microbiol. 2005;71:8982-8986.PubMedCrossrefGoogle Scholar

  • [19] Klein G, Pack A, Bonaparte, C, Reuter G. Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol. 1998;41:103-105.PubMedCrossrefGoogle Scholar

  • [20] Klein G, Hallmann C, Casa IA, Abad J, Louwers J, Reuter G. Exclusion of vanA, vanB and vanC type glycopeptides resistance in strains of Lactobacillus reuteri and Lactobacillus rhamnosus used as probiotics by polymerase chain reaction and hybridization methods. J Appl Microbiol. 2000;89:815-824.CrossrefGoogle Scholar

  • [21] Lebeer S, Vanderleyden J, de Keersmaecker SC. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol. 2010;8:171-184.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [22] Lin PP, Hsieh YM, Tsai ChCh. Antagonistic activity of Lactobacillusacidophilus RY2 isolated from healthy infancy feces on the growth and adhesion characteristics of enteroaggregative Escherichia coli. Anaerobe 2009;15:122-126.CrossrefWeb of ScienceGoogle Scholar

  • [23] Livingston M, Loach D, Wilson M, Tannock G, Baird M.Gut commensal Lactobacillus reuteri 100-23 stimulates an immunoregulatory response. Immunol Cell Biol. 2009;88:99-102.Web of ScienceGoogle Scholar

  • [24] Marin ML, Lee JH, Murtha J, Ustunol Z, Pestka JJ. Differential cytokine production in clonal macrophage and T-cell lines cultured with bifidobacteria. J Dairy Sci.1997;80:2713-2720.PubMedCrossrefGoogle Scholar

  • [25] Miettinen M, Vuopio-Varkila J, Varkila K. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect Immun. 1996;64:5403-5405.Google Scholar

  • [26] Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 2003;3:570-577.Google Scholar

  • [27] Ocana V, Silva C, Nader-Macias ME. Antibiotic susceptibility of potentially probiotic vaginal lactobacilli. Infect Dis Obstet Gynecol. 2006, doi:10.1155/IDOG/2006/18182.PubMedCrossrefGoogle Scholar

  • [28] Ortez JH. Disk diffusion testing. In: Manual of antimicrobial susceptibility testing. Coyle MB (ed) (http://forms.asm.org/ASM/files/ccLibraryFiles/Filename/000000002484/Manual%20of%20Antimicrobial%20Susceptibility%20Testing.pdf ) Published 2005. Accessed October 8, 2012.Google Scholar

  • [29] Pelto L, Isolauri E, Lilius EM, Nuutila J, Salminen S. Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects. Clin Exp Allergy 1998;28:1474-1479.PubMedCrossrefGoogle Scholar

  • [30] Perdigon G, Macias ME, Alvarez S, Oliver G, de Ruiz Holgado AP. Systemic augmentation of the immune response in mice by feeding fermented milk with Lactobacillus casei and Lactobacillus acidophilus. Immunology 1998;63:17-23.Google Scholar

  • [31] Preidis G, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 2009;136:2015-2031.Web of SciencePubMedCrossrefGoogle Scholar

  • [32] Roos S, Karner F, Axelsson L, Jonsson H. Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int J Syst Evol Microbiol. 2000;50:251-258.CrossrefPubMedGoogle Scholar

  • [33] Schiffrin EJ, Rochat F, Link-Amster F, Aeschlimann JM, Donnet-Hughes A. Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J Dairy Sci. 1995;78:491-497.CrossrefPubMedGoogle Scholar

  • [34] Schroeder BO, Wu Zh, Nuding S et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1.Nature 2011;469:419-423.Web of ScienceGoogle Scholar

  • [35] Sepp E, Stsepetova J, Smidt I et al. Intestinal lactoflora in Estonian and Norwegian patients with antibiotic associated diarrhea. Anaerobe 2011;17:407-409.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [36] Vincenti JE. The influence of cell-free Lactobacillus rhamnosus GG supernatant on the phagocytic activity of macrophages.Bioscience Horizons 2010;3:105-112.CrossrefGoogle Scholar

  • [37] Vinderola G, Matar C, Perdigon G. Role of intestinal epithelial cells in immune effects mediated by Gram-positive probiotic bacteria: involvement of Toll-like receptors.Clin Diagn Lab Immunol. 2005;12:1075-1084.PubMedGoogle Scholar

  • [38] Woodford N, Johnson AP, Morrison D, Speller DCE. Current perspective on glycopeptides resistance. Clin Microbiol Rev. 1995;8:585-615.Google Scholar

  • [39] Wright JH. A rapid method for the differential staining of blood films and malarial parasites. J Med Res. 1902;7:138-144.PubMedGoogle Scholar

  • [40] Zhang W, Wen K, Azevedo M. et al. Lactic acid bacterial colonization and human rotavirus infection influence distribution and frequencies of monocytes/macrophages and dendritic cells in neonatal gnotobiotic pigs. Vet Immunol Immunopathol. 2008;121:222-231.Web of ScienceCrossrefPubMedGoogle Scholar

  • [41] Zhou JS, Pillidge CJ, Gopal PK, Gill HS. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int J Food Microbiol. 2005; 98:211-217. CrossrefPubMedGoogle Scholar

About the article

Published Online: 2013-12-31

Published in Print: 2013-12-01


Citation Information: Acta Facultatis Pharmaceuticae Universitatis Comenianae, ISSN (Online) 1338-6786, ISSN (Print) 0301-2298, DOI: https://doi.org/10.2478/afpuc-2013-0017.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in