Jump to ContentJump to Main Navigation
Show Summary Details
More options …

European Pharmaceutical Journal

Acta Facultatis Pharmaceuticae Universitatis Comenianae (formerly)

2 Issues per year

CiteScore 2016: 0.28

SCImago Journal Rank (SJR) 2015: 0.195
Source Normalized Impact per Paper (SNIP) 2015: 0.202

Open Access
See all formats and pricing
More options …

Ceramides in the skin barrier

K. Vávrová
  • Corresponding author
  • Charles University, Faculty of Pharmacy in Hradec Králové, Skin Barrier Research Group, Hradec Králové, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Kováčik
  • Charles University, Faculty of Pharmacy in Hradec Králové, Skin Barrier Research Group, Hradec Králové, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ L. Opálka
  • Charles University, Faculty of Pharmacy in Hradec Králové, Skin Barrier Research Group, Hradec Králové, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-08 | DOI: https://doi.org/10.1515/afpuc-2017-0004


The skin barrier, which is essential for human survival on dry land, is located in the uppermost skin layer, the stratum corneum. The stratum corneum consists of corneocytes surrounded by multilamellar lipid membranes that prevent excessive water loss from the body and entrance of undesired substances from the environment. To ensure this protective function, the composition and organization of the lipid membranes is highly specialized. The major skin barrier lipids are ceramides, fatty acids and cholesterol in an approximately equimolar ratio. With hundreds of molecular species of ceramide, skin barrier lipids are a highly complex mixture that complicate the investigation of its behaviour. In this minireview, the structures of the major skin barrier lipids, formation of the stratum corneum lipid membranes and their molecular organization are described.

Keywords: Skin barrier; stratum corneum; ceramide; sphingolipid


  • [1] Banks-Schlegel S, Green H. Involucrin synthesis and tissue assem­bly by keratinocytes in natural and cultured human epithelia. J Cell Biol. 1981;90:732-737.CrossrefGoogle Scholar

  • [2] Behne M, Uchida Y, Seki T, de Montellano PO, Elias PM, Holleran WM. J. Invest. Dermatol. 2000;114:185.Google Scholar

  • [3] Bouwstra JA, Gooris GS, Bras W, Downing DT. Lipid organization in pig stratum corneum. J. Lipid. Res. 1995;36:685-695.Google Scholar

  • [4] Bouwstra JA, Gooris GS, Dubbelaar FE, Ponec M. Phase behavior of lipid mixtures based on human ceramides: coexistence of cry­stalline and liquid phases. J. Lipid. Res. 2001;42:1759-1770.Google Scholar

  • [5] Bouwstra JA, Gooris GS, van der Spek JA, Bras W. Structural inve­stigations of human stratum corneum by small-angle X-ray scat­tering. J. Invest. Dermatol. 1991;97:1005-1012.CrossrefGoogle Scholar

  • [6] Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta. 2006;1758:2080-2095.Google Scholar

  • [7] Breathnach AS. Aspects of epidermal ultrastructure. J. Invest. Dermatol. 1975;65:2-15.CrossrefGoogle Scholar

  • [8] Breiden B, Sandhoff K. The role of sphingolipid metabolism in cutaneous permeabilitybarrier formation. Biochim Biophys Acta. 2014;1841:441-452.Google Scholar

  • [9] Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 2005;6:328-340.CrossrefGoogle Scholar

  • [10] Corkery RW. The anti-parallel, extended or splayed-chain con­formation of amphiphilic lipids. Colloids Surf B Biointerfaces. 2002;26:3-20.CrossrefGoogle Scholar

  • [11] Craven B. Pseudosymmetry in cholesterol monohydrate. Acta Crystallogr Sect B. 1979;35:1123-1128.CrossrefGoogle Scholar

  • [12] Damien F, Boncheva M. The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of hu­man skin in vivo. J. Invest. Dermatol. 2010;130:611-614.Google Scholar

  • [13] de Jager M, Gooris G, Ponec M, Bouwstra J. Acylceramide head group architecture affects lipid organization in synthetic cerami­de mixtures. J. Invest. Dermatol. 2004;123:911-916.Google Scholar

  • [14] de Jager M, Groenink W, i Guivernau RB, et al. A novel in vitro per­cutaneous penetration model: evaluation of barrier properties with p-aminobenzoic acid and two of its derivatives. Pharma­ceut.Res. 2006;23:951-960.Google Scholar

  • [15] de Sousa Neto D, Gooris G, Bouwstra J. Effect of the omega-acyl­ceramides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chem Phys Lipids. 2011;164:184-195.Google Scholar

  • [16] Elias PM. Skin barrier function. Curr. Allergy Asthma Rep. 2008;8:299-305.CrossrefGoogle Scholar

  • [17] Elias PM, Goerke J, Friend DS. Mammalian Epidermal Barrier Layer Lipids: Composition and Influence on Structure. J. Invest. Derma­tol. 1977;69:535-546.Google Scholar

  • [18] Elias PM, Gruber R, Crumrine D, et al. Formation and functions of the corneocyte lipid envelope (CLE). Biochim Biophys Acta. 2014;1841:314-318.Google Scholar

  • [19] Feingold KR, Elias PM. Role of lipids in the formation and mainte­nance of the cutaneous permeability barrier. Biochim. Biophys. Acta. 2014;1841:280-294.Google Scholar

  • [20] Grayson S, Elias PM. Isolation and Lipid Biochemical Characte­rization of Stratum Corneum Membrane Complexes: Implica­tions for the Cutaneous Permeability Barrier. J. Invest. Dermatol. 1982;78:128-135.CrossrefGoogle Scholar

  • [21] Hannun YA. Functions of ceramide in coordinating cellular re­sponses to stress. Science. 1996;274:1855-1859.Google Scholar

  • [22] Hannun YA, Obeid LM. Principles of bioactive lipid signalling: les­sons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008;9:139-150.CrossrefGoogle Scholar

  • [23] Holleran WM, Takagi Y, Uchida Y. Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett. 2006;580:5456-5466.Google Scholar

  • [24] Hou SY, Mitra AK, White SH, Menon GK, Ghadially R, Elias PM. Membrane structures in normal and essential fatty acid-defi­cient stratum corneum: characterization by ruthenium tetroxide staining and x-ray diffraction. J. Invest. Dermatol. 1991;96:215-223.CrossrefGoogle Scholar

  • [25] Iwai I, Han H, den Hollander L, et al. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J. Invest. Dermatol. 2012;132:2215-2225.Google Scholar

  • [26] Jakasa I, Koster ES, Calkoen F, et al. Skin barrier function in he­althy subjects and patients with atopic dermatitis in relation to filaggrin loss-of-function mutations. J. Invest. Dermatol. 2011;131:540-542.Google Scholar

  • [27] Janusova B, Zbytovska J, Lorenc P, et al. Effect of ceramide acyl chain length on skin permeability and thermotropic phase be­havior of model stratum corneum lipid membranes. Biochim Bio­phys Acta. 2011;1811:129-137.Google Scholar

  • [28] Janůšová B, Zbytovská J, Lorenc P, et al. Effect of ceramide acyl chain length on skin permeability and thermotropic phase beha­vior of model stratum corneum lipid membranes. BBA-Mol. Cell Biol. L. 2011;1811:129-137.Google Scholar

  • [29] Jennemann R, Rabionet M, Gorgas K, et al. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet. 2012;21:586-608.CrossrefGoogle Scholar

  • [30] Jensen JM, Schutze S, Forl M, Kronke M, Proksch E. Roles for tumor necrosis factor receptor p55 and sphingomyelinase in repairing the cutaneous permeability barrier. J. Clin. Invest. 1999;104:1761-1770.CrossrefGoogle Scholar

  • [31] Jungersted JM, Scheer H, Mempel M, et al. Stratum corneum li­pids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 2010;65:911-918.CrossrefGoogle Scholar

  • [32] Kessner D, Brezesinski G, Funari SS, Dobner B, Neubert RH. Impact of the long chain omega-acylceramides on the stratum corneum lipid nanostructure. Part 1: Thermotropic phase behaviour of CER[EOS] and CER[EOP] studied using X-ray powder diffraction and FT-Raman spectroscopy. Chem Phys Lipids. 2010;163:42-50.Google Scholar

  • [33] Kessner D, Ruettinger A, Kiselev MA, Wartewig S, Neubert RH. Properties of ceramides and their impact on the stratum corne­um structure. Part 2: stratum corneum lipid model systems. Skin Pharmacol. Physiol. 2008;21:58-74.CrossrefGoogle Scholar

  • [34] Kovacik A, Opalka L, Silarova M, Roh J, Vavrova K. Synthesis of 6-hydroxyceramide using ruthenium-catalyzed hydrosilylation­protodesilylation. Unexpected formation of a long periodicity lamellar phase in skin lipid membranes. RSC Adv. 2016;6:73343-73350.Google Scholar

  • [35] Kováčik A, Roh J, Vávrová K. The chemistry and biology of 6 hy­droxyceramide, the youngest member of the human sphingoli­pid family. ChemBioChem. 2014;15:1555-1562.Google Scholar

  • [36] Lampe MA, Burlingame A, Whitney J, et al. Human stratum cor­neum lipids: characterization and regional variations. J.Lipid Res. 1983;24:120-130.Google Scholar

  • [37] Long SA, Wertz PW, Strauss JS, Downing DT. Human stratum corneum polar lipids and desquamation. Arch Dermatol Res. 1985;277:284-287.Google Scholar

  • [38] Madison KC, Swartzendruber DC, Wertz PW, Downing DT. Presen­ce of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J. Invest. Dermatol. 1987;88:714-718.CrossrefGoogle Scholar

  • [39] Masukawa Y, Narita H, Shimizu E, et al. Characterization of ove­rall ceramide species in human stratum corneum. J. Lipid. Res. 2008;49:1466-1476.CrossrefGoogle Scholar

  • [40] Mendelsohn R, Flach CR, Moore DJ. Determination of molecular conformation and permeation in skin via IR spectroscopy, micro­scopy, and imaging. Biochim Biophys Acta. 2006;1758:923-933.Google Scholar

  • [41] Mendelsohn R, Moore DJ. Infrared determination of conformatio­nal order and phase behavior in ceramides and stratum corneum models. Methods Enzymol. 2000;312:228-247.Google Scholar

  • [42] Mizutani Y, Mitsutake S, Tsuji K, Kihara A, Igarashi Y. Ceramide bio­synthesis in keratinocyte and its role in skin function. Biochimie. 2009;91:784-790.CrossrefGoogle Scholar

  • [43] Mojumdar EH, Gooris GS, Barlow DJ, Lawrence MJ, Deme B, Bo­uwstra JA. Skin lipids: localization of ceramide and fatty acid in the unit cell of the long periodicity phase. Biophys J. 2015a;108:2670-2679.CrossrefGoogle Scholar

  • [44] Mojumdar EH, Gooris GS, Bouwstra J. Phase behavior of skin lipid mixtures: the effect of cholesterol on lipid organization. Soft mat­ter. 2015b;11:4326-4336.Google Scholar

  • [45] Mojumdar EH, Kariman Z, van Kerckhove L, Gooris GS, Bouwstra JA. The role of ceramide chain length distribution on the barrier properties of the skin lipid membranes. Biochim Biophys Acta. 2014;1838:2473-2483.Google Scholar

  • [46] Mori K, Matsuda H. Syntheisi of sphingosine relatives .10. Synthesis of (2S,3R,4E)-1-O-(beta-D-glucopyranosyl)-N- 30’-(linoleoyloxy)triacontanoyl-4-icosasphingenine, a new esterified cerebroside isolated from human and pig epidermis. Liebigs Ann. Chem. 1991:529-535.Google Scholar

  • [47] Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R. Cera­mide composition of the psoriatic scale. Biochim Biophys Acta. 1993;1182:147-151.Google Scholar

  • [48] Muller S, Schmidt RR. Synthesis of two unique compounds, a ce­ramide and a cerebroside, occurring in human stratum corneum. J. Prakt. Chem. 2000;342:779-784.Google Scholar

  • [49] Neto DD, Gooris G, Bouwstra J. Effect of the omega-acylcera­mides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chem. Phys. Lipids. 2011;164:184-195.Google Scholar

  • [50] Norlen L. Current understanding of skin barrier morphology. Skin Pharmacol Physiol. 2013;26:213-216.CrossrefGoogle Scholar

  • [51] Norlen L, Nicander I, Lundsjo A, Cronholm T, Forslind B. A new HPLC-based method for the quantitative analysis of inner stra­tum corneum lipids with special reference to the free fatty acid fraction. Arch. Dermatol. Res. 1998;290:508-516.Google Scholar

  • [52] Novotný J, Hrabálek A, Vávrová K. Synthesis and structure-activi­ty relationships of skin ceramides. Curr Med Chem. 2010;17:2301-2324.CrossrefGoogle Scholar

  • [53] Novotný J, Janůšová B, Novotný M, Hrabálek A, Vávrová K. Short­-chain ceramides decrease skin barrier properties. Skin Pharma­col. Physiol. 2009;22:22-30.Google Scholar

  • [54] Opálka L, Kováčik A, Maixner J, Vávrová K. Omega-O-Acylcerami­des in Skin Lipid Membranes: Effects of Concentration, Sphingoid Base, and Model Complexity on Microstructure and Permeability. Langmuir. 2016;32:12894-12904.CrossrefGoogle Scholar

  • [55] Opálka L, Kováčik A, SochorováM, et al. Scalable Synthesis of Hu­man Ultralong Chain Ceramides. Org. Lett. 2015;17:5456-5459.CrossrefGoogle Scholar

  • [56] Pullmannová P, Staňková K, Pospíšilová M, Školová B, Zbytovská J, Vávrová K. Effects of sphingomyelin/ceramide ratio on the per­meability and microstructure of model stratum corneum lipid membranes. BBA-Biomembranes. 2014;1838:2115-2126.Google Scholar

  • [57] Rabionet M, Bayerle A, Marsching C, et al. 1-O-acylceramides are natural components of human and mouse epidermis. J. Lipid. Res. 2013;54:3312-3321.CrossrefGoogle Scholar

  • [58] Rabionet M, Gorgas K, Sandhoff R. Ceramide synthesis in the epi­dermis. Biochim Biophys Acta. 2014;1841:422-434.Google Scholar

  • [59] Rerek ME, Chen H, Markovic B, et al. Phytosphingosine and Sphin­gosine Ceramide Headgroup Hydrogen Bonding: Structural In­sights through Thermotropic Hydrogen/Deuterium Exchange. J. Phys. Chem. B. 2001;105:9355 -9362.CrossrefGoogle Scholar

  • [60] Robson KJ, Stewart ME, Michelsen S, Lazo ND, Downing DT. 6-Hy­droxy-4-sphingenine in human epidermal ceramides. J. Lipid. Res. 1994;35:2060-2068.Google Scholar

  • [61] Shieh H-S, Hoard LG, Nordman CE. The structure of cholesterol. Acta Crystallogr Sect B. 1981;37:1538-1543.CrossrefGoogle Scholar

  • [62] Schreiner V, Pfeiffer S, Lanzendörfer G, et al. Barrier characteristics of different human skin types investigated with X-ray diffraction, lipid analysis, and electron microscopy imaging. J. Invest. Derma­tol. 2000;114:654-660.Google Scholar

  • [63] Skolova B, Hudska K, Pullmannova P, et al. Different phase be­havior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: infrared spectroscopy using deuterated lipids. J Phys Chem B. 2014;118:10460-10470.CrossrefGoogle Scholar

  • [64] Skolova B, Janusova B, Vavrova K. Ceramides with a pentadeca­sphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes. Biochim Biophys Acta. 2016;1858:220-232.Google Scholar

  • [65] Skolova B, Janusova B, Zbytovska J, et al. Ceramides in the skin lipid membranes: length matters. Langmuir. 2013;29:15624-15633.CrossrefGoogle Scholar

  • [66] Stahlberg S, Lange S, Dobner B, Huster D. Probing the Role of Ceramide Headgroup Polarity in Short-Chain Model Skin Barrier Lipid Mixtures by (2)H Solid-State NMR Spectroscopy. Langmuir. 2016;32:2023-2031.CrossrefGoogle Scholar

  • [67] Stahlberg S, Skolova B, Madhu PK, Vogel A, Vavrova K, Huster D. Probing the role of the ceramide acyl chain length and sphin­gosine unsaturation in model skin barrier lipid mixtures by (2)H solid-state NMR spectroscopy. Langmuir. 2015;31:4906-4915.CrossrefGoogle Scholar

  • [68] ŠkolováB, HudskáKr, PullmannováP, et al. Different phase be­havior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: infrared spectroscopy using deuterated lipids. J. Phys. Chem. B. 2014;118:10460-10470.CrossrefGoogle Scholar

  • [69] Školová B, Janůšová B, Vávrová K. Ceramides with a pentadeca­sphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes. BBA-Biomembranes. 2016;1858:220-232.Google Scholar

  • [70] ŠkolováB, JanůšováB, ZbytovskáJ, et al. Ceramides in the skin lipid membranes: length matters. Langmuir. 2013;29:15624-15633.CrossrefGoogle Scholar

  • [71] t’Kindt R, Jorge L, Dumont E, et al. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography­-quadrupole time-of-flight mass spectrometry. Anal Chem. 2012;84:403-411.Google Scholar

  • [72] Uchida Y, Holleran WM. Omega-O-acylceramide, a lipid essen­tial for mammalian survival. Journal of Dermatological Science. 2008;51:77-87.CrossrefGoogle Scholar

  • [73] van Smeden J, Boiten WA, Hankemeier T, Rissmann R, Bouwstra JA, Vreeken RJ. Combined LC/MS-platform for analysis of all ma­jor stratum corneum lipids, and the profiling of skin substitutes. Biochim Biophys Acta. 2014a;1841:70-79.Google Scholar

  • [74] van Smeden J, Hoppel L, van der Heijden R, Hankemeier T, Vreek­en RJ, Bouwstra JA. LC/MS analysis of stratum corneum lipids: ce­ramide profiling and discovery. J. Lipid Res. 2011;52:1211-1221.CrossrefGoogle Scholar

  • [75] van Smeden J, Janssens M, Gooris GS, Bouwstra JA. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim Biophys Acta. 2014b;1841:295-313.Google Scholar

  • [76] Vasireddy V, Uchida Y, Salem N, et al. Hum. Mol. Genet. 2007;16:471.CrossrefGoogle Scholar

  • [77] Vavrova K, Henkes D, Struver K, et al. Filaggrin Deficiency Leads to Impaired Lipid Profile and Altered Acidification Pathways in a 3D Skin Construct. J Invest Dermatol. 2014;134:746-753.Google Scholar

  • [78] Wertz PW, Madison KC, Downing DT. Covalently bound lipids of human stratum corneum. J. Invest. Dermatol. 1989;92:109-111.CrossrefGoogle Scholar

  • [79] White SH, Mirejovsky D, King GI. Structure of lamellar lipid do­mains and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study. Biochemistry. 1988;27:3725-3732.CrossrefGoogle Scholar

About the article

Received: 2016-10-31

Accepted: 2016-12-07

Published Online: 2017-07-08

Published in Print: 2017-06-27

Citation Information: Acta Facultatis Pharmaceuticae Universitatis Comenianae, ISSN (Online) 1338-6786, DOI: https://doi.org/10.1515/afpuc-2017-0004.

Export Citation

© by K. Vávrová. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in