Jump to ContentJump to Main Navigation
Show Summary Details
More options …

European Pharmaceutical Journal

Acta Facultatis Pharmaceuticae Universitatis Comenianae (formerly)

2 Issues per year

CiteScore 2016: 0.28

SCImago Journal Rank (SJR) 2015: 0.195
Source Normalized Impact per Paper (SNIP) 2015: 0.202

Open Access
See all formats and pricing
More options …

Ceramides in the skin barrier

K. Vávrová
  • Corresponding author
  • Charles University, Faculty of Pharmacy in Hradec Králové, Skin Barrier Research Group, Hradec Králové, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Kováčik
  • Charles University, Faculty of Pharmacy in Hradec Králové, Skin Barrier Research Group, Hradec Králové, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ L. Opálka
  • Charles University, Faculty of Pharmacy in Hradec Králové, Skin Barrier Research Group, Hradec Králové, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-11-30 | DOI: https://doi.org/10.1515/afpuc-2017-0004


The skin barrier, which is essential for human survival on dry land, is located in the uppermost skin layer, the stratum corneum. The stratum corneum consists of corneocytes surrounded by multilamellar lipid membranes that prevent excessive water loss from the body and entrance of undesired substances from the environment. To ensure this protective function, the composition and organization of the lipid membranes is highly specialized. The major skin barrier lipids are ceramides, fatty acids and cholesterol in an approximately equimolar ratio. With hundreds of molecular species of ceramide, skin barrier lipids are a highly complex mixture that complicate the investigation of its behaviour. In this minireview, the structures of the major skin barrier lipids, formation of the stratum corneum lipid membranes and their molecular organization are described.

Keywords: Skin barrier - stratum corneum - ceramide - sphingolipid


  • [1] Banks-Schlegel S, Green H. Involucrin synthesis and tissue assembly by keratinocytes in natural and cultured human epithelia. J Cell Biol. 1981;90:732-737.Google Scholar

  • [2] Behne M, Uchida Y, Seki T, de Montellano PO, Elias PM, Holleran WM. J. Invest. Dermatol. 2000;114:185.Google Scholar

  • [3] Bouwstra JA, Gooris GS, Bras W, Downing DT. Lipid organization in pig stratum corneum. J. Lipid. Res. 1995;36:685-695.Google Scholar

  • [4] Bouwstra JA, Gooris GS, Dubbelaar FE, Ponec M. Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and liquid phases. J. Lipid. Res. 2001;42:1759-1770.Google Scholar

  • [5] Bouwstra JA, Gooris GS, van der Spek JA, Bras W. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Invest. Dermatol. 1991;97:1005-1012.CrossrefGoogle Scholar

  • [6] Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta. 2006;1758:2080-2095.CrossrefGoogle Scholar

  • [7] Breathnach AS. Aspects of epidermal ultrastructure. J. Invest. Dermatol. 1975;65:2-15.CrossrefGoogle Scholar

  • [8] Breiden B, Sandhoff K. The role of sphingolipid metabolism in cutaneous permeabilitybarrier formation. Biochim Biophys Acta. 2014;1841:441-452.Google Scholar

  • [9] Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 2005;6:328-340.CrossrefGoogle Scholar

  • [10] Corkery RW. The anti-parallel, extended or splayed-chain conformation of amphiphilic lipids. Colloids Surf B Biointerfaces. 2002;26:3-20.Google Scholar

  • [11] Craven B. Pseudosymmetry in cholesterol monohydrate. Acta Crystallogr Sect B. 1979;35:1123-1128. CrossrefGoogle Scholar

  • [12] Damien F, Boncheva M. The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of human skin in vivo. J. Invest. Dermatol. 2010;130:611-614.Google Scholar

  • [13] de Jager M, Gooris G, Ponec M, Bouwstra J. Acylceramide head group architecture affects lipid organization in synthetic ceramide mixtures. J. Invest. Dermatol. 2004;123:911-916.Google Scholar

  • [14] de Jager M, Groenink W, i Guivernau RB, et al. A novel in vitro percutaneous penetration model: evaluation of barrier properties with p-aminobenzoic acid and two of its derivatives. Pharmaceut. Res. 2006;23:951-960.Google Scholar

  • [15] de Sousa Neto D, Gooris G, Bouwstra J. Effect of the omega-acylceramides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chem Phys Lipids. 2011;164:184-195.Google Scholar

  • [16] Elias PM. Skin barrier function. Curr. Allergy Asthma Rep. 2008;8:299-305.Google Scholar

  • [17] Elias PM, Goerke J, Friend DS. Mammalian Epidermal Barrier Layer Lipids: Composition and Influence on Structure. J. Invest. Dermatol. 1977;69:535-546.Google Scholar

  • [18] Elias PM, Gruber R, Crumrine D, et al. Formation and functions of the corneocyte lipid envelope (CLE). Biochim Biophys Acta. 2014;1841:314-318.CrossrefGoogle Scholar

  • [19] Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim. Biophys. Acta. 2014;1841:280-294.CrossrefGoogle Scholar

  • [20] Grayson S, Elias PM. Isolation and Lipid Biochemical Characterization of Stratum Corneum Membrane Complexes: Implications for the Cutaneous Permeability Barrier. J. Invest. Dermatol. 1982;78:128-135.Google Scholar

  • [21] Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science. 1996;274:1855-1859.Google Scholar

  • [22] Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008;9:139-150.CrossrefGoogle Scholar

  • [23] Holleran WM, Takagi Y, Uchida Y. Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett. 2006;580:5456-5466.Google Scholar

  • [24] Hou SY, Mitra AK, White SH, Menon GK, Ghadially R, Elias PM. Membrane structures in normal and essential fatty acid-deficient stratum corneum: characterization by ruthenium tetroxide staining and x-ray diffraction. J. Invest. Dermatol. 1991;96:215-223.CrossrefGoogle Scholar

  • [25] Iwai I, Han H, den Hollander L, et al. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J. Invest. Dermatol. 2012;132:2215-2225.Google Scholar

  • [26] Jakasa I, Koster ES, Calkoen F, et al. Skin barrier function in healthy subjects and patients with atopic dermatitis in relation to filaggrin loss-of-function mutations. J. Invest. Dermatol. 2011;131:540-542.Google Scholar

  • [27] Janusova B, Zbytovska J, Lorenc P, et al. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes. Biochim Biophys Acta. 2011;1811:129-137.CrossrefGoogle Scholar

  • [28] Janůšova B, Zbytovska J, Lorenc P, et al. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes. BBA-Mol. Cell Biol. L. 2011;1811:129-137.Google Scholar

  • [29] Jennemann R, Rabionet M, Gorgas K, et al. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet. 2012;21:586-608.CrossrefGoogle Scholar

  • [30] Jensen JM, Schutze S, Forl M, Kronke M, Proksch E. Roles for tumor necrosis factor receptor p55 and sphingomyelinase in repairing the cutaneous permeability barrier. J. Clin. Invest. 1999;104:1761-1770.CrossrefGoogle Scholar

  • [31] Jungersted JM, Scheer H, Mempel M, et al. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 2010;65:911-918. CrossrefGoogle Scholar

  • [32] Kessner D, Brezesinski G, Funari SS, Dobner B, Neubert RH. Impact of the long chain omega-acylceramides on the stratum corneum lipid nanostructure. Part 1: Thermotropic phase behaviour of CER[EOS] and CER[EOP] studied using X-ray powder diffraction and FT-Raman spectroscopy. Chem Phys Lipids. 2010;163:42-50.Google Scholar

  • [33] Kessner D, Ruettinger A, Kiselev MA, Wartewig S, Neubert RH. Properties of ceramides and their impact on the stratum corneum structure. Part 2: stratum corneum lipid model systems. Skin Pharmacol. Physiol. 2008;21:58-74.Google Scholar

  • [34] Kovacik A, Opalka L, Silarova M, Roh J, Vavrova K. Synthesis of 6-hydroxyceramide using ruthenium-catalyzed hydrosilylation- -protodesilylation. Unexpected formation of a long periodicity lamellar phase in skin lipid membranes. RSC Adv. 2016;6:73343-73350.Google Scholar

  • [35] Kovačik A, Roh J, Vavrova K. The chemistry and biology of 6 hydroxyceramide, the youngest member of the human sphingolipid family. ChemBioChem. 2014;15:1555-1562.CrossrefGoogle Scholar

  • [36] Lampe MA, Burlingame A, Whitney J, et al. Human stratum corneum lipids: characterization and regional variations. J.Lipid Res. 1983;24:120-130.Google Scholar

  • [37] Long SA, Wertz PW, Strauss JS, Downing DT. Human stratum corneum polar lipids and desquamation. Arch Dermatol Res. 1985;277:284-287.Google Scholar

  • [38] Madison KC, Swartzendruber DC, Wertz PW, Downing DT. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J. Invest. Dermatol. 1987;88:714-718.CrossrefGoogle Scholar

  • [39] Masukawa Y, Narita H, Shimizu E, et al. Characterization of overall ceramide species in human stratum corneum. J. Lipid. Res. 2008;49:1466-1476.Google Scholar

  • [40] Mendelsohn R, Flach CR, Moore DJ. Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim Biophys Acta. 2006;1758:923-933. CrossrefGoogle Scholar

  • [41] Mendelsohn R, Moore DJ. Infrared determination of conformational order and phase behavior in ceramides and stratum corneum models. Methods Enzymol. 2000;312:228-247.Google Scholar

  • [42] Mizutani Y, Mitsutake S, Tsuji K, Kihara A, Igarashi Y. Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie. 2009;91:784-790.CrossrefGoogle Scholar

  • [43] Mojumdar EH, Gooris GS, Barlow DJ, Lawrence MJ, Deme B, Bouwstra JA. Skin lipids: localization of ceramide and fatty acid in the unit cell of the long periodicity phase. Biophys J. 2015a;108:2670-2679.Google Scholar

  • [44] Mojumdar EH, Gooris GS, Bouwstra J. Phase behavior of skin lipid mixtures: the effect of cholesterol on lipid organization. Soft matter. 2015b;11:4326-4336.Google Scholar

  • [45] Mojumdar EH, Kariman Z, van Kerckhove L, Gooris GS, Bouwstra JA. The role of ceramide chain length distribution on the barrier properties of the skin lipid membranes. Biochim Biophys Acta. 2014;1838:2473-2483.CrossrefGoogle Scholar

  • [46] Mori K, Matsuda H. Syntheisi of sphingosine relatives .10. Synthesis of (2S,3R,4E)-1-O-(beta-D-glucopyranosyl)-N- 30’- (linoleoyloxy)triacontanoyl-4-icosasphingenine, a new esterified cerebroside isolated from human and pig epidermis. Liebigs Ann. Chem. 1991:529-535.Google Scholar

  • [47] Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R. Ceramide composition of the psoriatic scale. Biochim Biophys Acta. 1993;1182:147-151.CrossrefGoogle Scholar

  • [48] Muller S, Schmidt RR. Synthesis of two unique compounds, a ceramide and a cerebroside, occurring in human stratum corneum. J. Prakt. Chem. 2000;342:779-784.Google Scholar

  • [49] Neto DD, Gooris G, Bouwstra J. Effect of the omega-acylceramides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chem. Phys. Lipids. 2011;164:184-195.Google Scholar

  • [50] Norlen L. Current understanding of skin barrier morphology. Skin Pharmacol Physiol. 2013;26:213-216. CrossrefGoogle Scholar

  • [51] Norlen L, Nicander I, Lundsjo A, Cronholm T, Forslind B. A new HPLC-based method for the quantitative analysis of inner stratum corneum lipids with special reference to the free fatty acid fraction. Arch. Dermatol. Res. 1998;290:508-516.Google Scholar

  • [52] Novotny J, Hrabalek A, Vavrova K. Synthesis and structure-activity relationships of skin ceramides. Curr Med Chem. 2010;17:2301-2324. CrossrefGoogle Scholar

  • [53] Novotny J, Janůšova B, Novotny M, Hrabalek A, Vavrova K. Short- -chain ceramides decrease skin barrier properties. Skin Pharmacol. Physiol. 2009;22:22-30.Google Scholar

  • [54] Opalka L, Kovačik A, Maixner J, Vavrova K. Omega-O-Acylceramides in Skin Lipid Membranes: Effects of Concentration, Sphingoid Base, and Model Complexity on Microstructure and Permeability. Langmuir. 2016;32:12894-12904.CrossrefGoogle Scholar

  • [55] Opálka L, Kováčik A, Sochorová M, et al. Scalable Synthesis of Human Ultralong Chain Ceramides. Org. Lett. 2015;17:5456-5459. Google Scholar

  • [56] Pullmannova P, Staňkova K, Pospišilova M, Školova B, Zbytovska J, Vavrova K. Effects of sphingomyelin/ceramide ratio on the permeability and microstructure of model stratum corneum lipid membranes. BBA-Biomembranes. 2014;1838:2115-2126.CrossrefGoogle Scholar

  • [57] Rabionet M, Bayerle A, Marsching C, et al. 1-O-acylceramides are natural components of human and mouse epidermis. J. Lipid. Res. 2013;54:3312-3321.Google Scholar

  • [58] Rabionet M, Gorgas K, Sandhoff R. Ceramide synthesis in the epidermis. Biochim Biophys Acta. 2014;1841:422-434.CrossrefGoogle Scholar

  • [59] Rerek ME, Chen H, Markovic B, et al. Phytosphingosine and Sphingosine Ceramide Headgroup Hydrogen Bonding: Structural Insights through Thermotropic Hydrogen/Deuterium Exchange. J. Phys. Chem. B. 2001;105:9355 -9362.Google Scholar

  • [60] Robson KJ, Stewart ME, Michelsen S, Lazo ND, Downing DT. 6-Hydroxy-4-sphingenine in human epidermal ceramides. J. Lipid. Res. 1994;35:2060-2068.Google Scholar

  • [61] Shieh H-S, Hoard LG, Nordman CE. The structure of cholesterol. Acta Crystallogr Sect B. 1981;37:1538-1543.Google Scholar

  • [62] Schreiner V, Pfeiffer S, Lanzendorfer G, et al. Barrier characteristics of different human skin types investigated with X-ray diffraction, lipid analysis, and electron microscopy imaging. J. Invest. Dermatol. 2000;114:654-660.Google Scholar

  • [63] Skolova B, Hudska K, Pullmannova P, et al. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: infrared spectroscopy using deuterated lipids. J Phys Chem B. 2014;118:10460-10470.CrossrefGoogle Scholar

  • [64] Skolova B, Janusova B, Vavrova K. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes. Biochim Biophys Acta. 2016;1858:220-232.CrossrefGoogle Scholar

  • [65] Skolova B, Janusova B, Zbytovska J, et al. Ceramides in the skin lipid membranes: length matters. Langmuir. 2013;29:15624-15633.CrossrefGoogle Scholar

  • [66] Stahlberg S, Lange S, Dobner B, Huster D. Probing the Role of Ceramide Headgroup Polarity in Short-Chain Model Skin Barrier Lipid Mixtures by (2)H Solid-State NMR Spectroscopy. Langmuir. 2016;32:2023-2031.Google Scholar

  • [67] Stahlberg S, Skolova B, Madhu PK, Vogel A, Vavrova K, Huster D. Probing the role of the ceramide acyl chain length and sphingosine unsaturation in model skin barrier lipid mixtures by (2)H solid-state NMR spectroscopy. Langmuir. 2015;31:4906-4915.Google Scholar

  • [68] Školová B, Hudská Kr, Pullmannová P, et al. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: infrared spectroscopy using deuterated lipids. J. Phys. Chem. B. 2014;118:10460-10470.CrossrefGoogle Scholar

  • [69] Školova B, Janůšova B, Vavrova K. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes. BBA-Biomembranes. 2016;1858:220-232.Google Scholar

  • [70] Školová B, Janůšová B, Zbytovská J, et al. Ceramides in the skinlipid membranes: length matters. Langmuir. 2013;29:15624-15633. CrossrefGoogle Scholar

  • [71] t’Kindt R, Jorge L, Dumont E, et al. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography- -quadrupole time-of-flight mass spectrometry. Anal Chem. 2012;84:403-411.Google Scholar

  • [72] Uchida Y, Holleran WM. Omega-O-acylceramide, a lipid essential for mammalian survival. Journal of Dermatological Science. 2008;51:77-87.Google Scholar

  • [73] van Smeden J, Boiten WA, Hankemeier T, Rissmann R, Bouwstra JA, Vreeken RJ. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim Biophys Acta. 2014a;1841:70-79.Google Scholar

  • [74] van Smeden J, Hoppel L, van der Heijden R, Hankemeier T, Vreeken RJ, Bouwstra JA. LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. J. Lipid Res. 2011;52:1211-1221.CrossrefGoogle Scholar

  • [75] van Smeden J, Janssens M, Gooris GS, Bouwstra JA. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim Biophys Acta. 2014b;1841:295-313.CrossrefGoogle Scholar

  • [76] Vasireddy V, Uchida Y, Salem N, et al. Hum. Mol. Genet. 2007;16:471.CrossrefGoogle Scholar

  • [77] Vavrova K, Henkes D, Struver K, et al. Filaggrin Deficiency Leads to Impaired Lipid Profile and Altered Acidification Pathways in a 3D Skin Construct. J Invest Dermatol. 2014;134:746-753.Google Scholar

  • [78] Wertz PW, Madison KC, Downing DT. Covalently bound lipids of human stratum corneum. J. Invest. Dermatol. 1989;92:109-111.Google Scholar

  • [79] White SH, Mirejovsky D, King GI. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study. Biochemistry. 1988;27:3725-3732.CrossrefGoogle Scholar

About the article

Received: 2016-10-31

Accepted: 2016-12-07

Published Online: 2017-11-30

Published in Print: 2017-11-27

Citation Information: European Pharmaceutical Journal, Volume 64, Issue 2, Pages 28–35, ISSN (Online) 2453-6725, DOI: https://doi.org/10.1515/afpuc-2017-0004.

Export Citation

© by K. Vávrová. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in