Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Analysis and Geometry in Metric Spaces

Ed. by Ritoré, Manuel

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 1.063
Source Normalized Impact per Paper (SNIP) 2017: 0.833

Mathematical Citation Quotient (MCQ) 2017: 0.86

Open Access
See all formats and pricing
More options …

On Asymmetric Distances

Andrea C.G. Mennucci
Published Online: 2013-06-11 | DOI: https://doi.org/10.2478/agms-2013-0004


In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.

Keywords: Asymmetric metric; general metric; quasi metric; ostensible metric; Finsler metric; run–continuity; intrinsic metric; pathmetric; length structure

MSC: 54C99; 54E25; 26A45

  • [1] D. Bao, S. S. Chern, and Z. Shen. An Introduction to Riemann-Finsler Geometry. (Springer–Verlag), (2000). Google Scholar

  • [2] Leonard M. Blumenthal. Theory and applications of distance geometry. Second edition. Chelsea Publishing Co., New York, (1970). Google Scholar

  • [3] V. I. Bogachev. Measure theory. Vol. I, II. Springer-Verlag, Berlin, (2007). Google Scholar

  • [4] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry, volume 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, (2001). Google Scholar

  • [5] H. Busemann. Local metric geometry. Trans. Amer. Math. Soc., 56:200–274, (1944). CrossrefGoogle Scholar

  • [6] H. Busemann. The geometry of geodesics, volume 6 of Pure and applied mathematics. Academic Press (New York), (1955). Google Scholar

  • [7] H. Busemann. Recent synthetic differential geometry, volume 54 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer Verlag, (1970). Google Scholar

  • [8] G. Buttazzo. Semicontinuity, relaxation and integral representation in the calculus of variation. Number 207 in scientific & technical. Longman, (1989). Google Scholar

  • [9] S. Cohn-Vossen. Existenz kürzester Wege. Compositio math., Groningen,, 3:441–452, (1936). Google Scholar

  • [10] Bernard Dacorogna. Direct methods in the calculus of variations, volume 78 of Applied Mathematical Sciences. Springer, New York, second edition, (2008). Google Scholar

  • [11] Alessandro Duci and Andrea Mennucci. Banach-like metrics and metrics of compact sets. eprint arXiv:0707.1174. (2007). Google Scholar

  • [12] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces, volume 152 of Progress in Mathematics. Birkhäuser Boston, (2007). Google Scholar

  • [13] Gonçalo Gutierres and Dirk Hofmann. Approaching metric domains. Applied Categorical Structures, pages 1–34, (2012). Google Scholar

  • [14] H. Hopf and W. Rinow. Ueber den Begriff der vollständigen differentialgeometrischen Fläche. Comment. Math. Helv., 3(1):209–225, (1931). CrossrefGoogle Scholar

  • [15] A. C. G. Mennucci. Regularity and variationality of solutions to Hamilton-Jacobi equations. part ii: variationality, existence, uniqueness. Applied Mathematics and Optimization, 63(2), (2011). Google Scholar

  • [16] A. C. G. Mennucci. Geodesics in asymmetric metric spaces. In preparation, (2013). Google Scholar

  • [17] Athanase Papadopoulos. Metric spaces, convexity and nonpositive curvature, volume 6 of IRMA Lectures in Mathematics and Theoretical Physics. European Mathematical Society (EMS), Zürich, (2005). Google Scholar

  • [18] B. B. Phadke. Nonsymmetric weakly complete g-spaces. Fundamenta Mathematicae, (1974). Google Scholar

  • [19] E. M. Zaustinsky. Spaces with non-symmetric distances. Number 34 in Mem. Amer. Math. Soc. AMS, (1959).Google Scholar

About the article

Received: 2013-03-24

Accepted: 2013-05-15

Published Online: 2013-06-11

Citation Information: Analysis and Geometry in Metric Spaces, Volume 1, Pages 200–231, ISSN (Online) 2299-3274, DOI: https://doi.org/10.2478/agms-2013-0004.

Export Citation

©2013 Versita Sp. z o.o.. This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in