Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Analysis and Geometry in Metric Spaces

Ed. by Ritoré, Manuel

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 1.063
Source Normalized Impact per Paper (SNIP) 2017: 0.833

Mathematical Citation Quotient (MCQ) 2017: 0.86

Open Access
See all formats and pricing
More options …

Uniform Gaussian Bounds for Subelliptic Heat Kernels and an Application to the Total Variation Flow of Graphs over Carnot Groups

Luca Capogna
  • Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609, USA
  • Dipartimento di Matematica, Piazza Porta S. Donato 5, 40126 Bologna, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giovanna Citti / Maria Manfredini
Published Online: 2013-08-06 | DOI: https://doi.org/10.2478/agms-2013-0006


In this paper we study heat kernels associated with a Carnot group G, endowed with a family of collapsing left-invariant Riemannian metrics σε which converge in the Gromov- Hausdorff sense to a sub-Riemannian structure on G as ε→ 0. The main new contribution are Gaussian-type bounds on the heat kernel for the σε metrics which are stable as ε→0 and extend the previous time-independent estimates in [16]. As an application we study well posedness of the total variation flow of graph surfaces over a bounded domain in a step two Carnot group (G; σε ). We establish interior and boundary gradient estimates, and develop a Schauder theory which are stable as ε → 0. As a consequence we obtain long time existence of smooth solutions of the sub-Riemannian flow (ε = 0), which in turn yield sub-Riemannian minimal surfaces as t → ∞.

Keywords: Mean curvature flow; sub-Riemannian geometry; Carnot groups

MSC: 53C44; 53C17; 35R03

  • [1] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, The Dirichlet problem for the total variation flow. J. Funct. Anal. 180 (2001), no. 2, 347-403. Google Scholar

  • [2] F. Andreu, V. Caselles and J. M. Mazón Ruiz, Parabolic quasilinear equations minimizing linear growth functionals, Progr. Math., 223, Birkhauser, Basel, 2004 Google Scholar

  • [3] D. G. Aronson. and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal., 25 (1967), 81-122. Google Scholar

  • [4] D. Barbieri. G. Citti, G. Cocci and A. Sarti, A cortical-inspired geometry for contour perception and motion integration, submitted paper. Google Scholar

  • [5] G. Bellettini, V. Caselles and M. Novaga, The total variation flow in RN, J. Differential Equations 184 (2002), no. 2, 475-525. Google Scholar

  • [6] A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, Adv. Differential Equations, 7 (2002), 1153-1192. Google Scholar

  • [7] A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Fundamental solutions for non-divergence form operators on stratified groups, Trans. Amer. Math. Soc. 356 (2004), no. 7, 2709-2737. Google Scholar

  • [8] L. Capogna and G. Citti, Generalized mean curvature flow in Carnot groups, Comm. Partial Differential Equations 34 (2009), no. 7-9, 937-956. Web of ScienceGoogle Scholar

  • [9] L. Capogna, G. Citti and M. Manfredini, Regularity of non-characteristic minimal graphs in the Heisenberg group H1, Indiana Univ. Math. J. 58 (5) (2009) 2115-2160. Google Scholar

  • [10] L. Capogna, G. Citti and M. Manfredini, Smoothness of Lipschitz intrinsic minimal graphs in the Heisenberg group Hn, n > 1 J. Reine Angew. Math. (Crelle’s Journal) (2010), 648, 75-110. Google Scholar

  • [11] L. Capogna, G. Citti and G. Rea, A sub-elliptic analogue of Aronson-Serrin Harnack inequality, to appear in Mathematische Annalen, (2013). Google Scholar

  • [12] L. Capogna, G. Citti and C. Senni Guidotti Magnani,Sub-Riemannian Heat Kernels and Mean Curvature of graphs, Jour. of Functional Analysis, 264 (2013), no. 8 1899-1928. Google Scholar

  • [13] L. Capogna, D. Danielli, J. Tyson and S. Pauls, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhauser, 2007. Google Scholar

  • [14] J.-H. Cheng, J.-F. Hwang and P. Yang, Regularity of C1 smooth surfaces with prescribed p-mean curvature in the Heisenberg group, Math. Ann. 344 (2009), no. 1, 1-35. CrossrefWeb of ScienceGoogle Scholar

  • [15] J.H. Cheng and J.F. Hwang, A. Malchiodi and P. Yang, Minimal surfaces in pseudohermitian geometry, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), 129-177. Google Scholar

  • [16] G. Citti and M. Manfredini, Uniform estimates of the fundamental solution for a family of hypoelliptic operators, Potential Anal. 25 (2006), no. 2, 147-164. Google Scholar

  • [17] G. Citti, A. Pascucci and S. Polidoro, On the regularity of solutions to a nonlinear ultraparabolic equation arising in mathematical finance. Differential Integral Equations 14 (2001), no. 6, 701-738. Google Scholar

  • [18] G. Citti and A. Sarti, A cortical based model of perceptual completion in the Roto-Translation space, Journal of Mathematical Analysis and Vision, (2006), 24, 307 - 326. Google Scholar

  • [19] T. Chan, S. Esedoglu, F. Park and A. Yip, Total Variation Image Restoration: Overview and Recent Developments Handbook of Mathematical Models in Computer Vision, (2006), 17-31. Google Scholar

  • [20] R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homognes. (french) Etude de certaines intégrales singulières, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, 1971. Google Scholar

  • [21] D. Danielli, N. Garofalo, D.M. Nhieu and S.D. Pauls, Instability of graphical strips and a positive answer to the Bernstein problem in the Heisenberg group H1, J. Differ. Geom, (2009), 81(2), 251-295. CrossrefGoogle Scholar

  • [22] N. Dirr, F. Dragoni and M. von Renesse, Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach, Communications on Pure and Applied Mathematics, 9 (2), (2010) pp. 307-326. Google Scholar

  • [23] R. Duits and E. M. Franken, Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part I: Linear left-invariant diffusion equations on SE(2), Quarterly of Applied Mathematics, AMS, (2010), 68, 255-292. Google Scholar

  • [24] R. Duits and E. Franken, Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part II: Nonlinear left-invariant diffusion equations on invertible orientation scores,Quarterly of Applied Mathematics, AMS, (2010), 68, 293-331. Google Scholar

  • [25] R. Duits, H. Fuhr, B.J. Janssen, M. Bruurmijn, L.M.J. Florack and H.A.C.van Assen, Evolution Equations on Gabor Transforms and their Applications, Applied and Computational Harmonic Analysis, accepted for publication, to appear Google Scholar

  • [26] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 2 (1975), no. 13, 161-207. Google Scholar

  • [27] G. B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton Univ. Press, Princeton, 1989. Google Scholar

  • [28] G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Princeton University Press, Princeton, New Jersey, 1982. Google Scholar

  • [29] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964 xiv+347 pp. Google Scholar

  • [30] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Birkhauser Boston Inc., Boston, MA, 1999, Edited by J. LaFontaine and P. Pansu. Based on the 1981. French original, Translated from the French by Sean Michael Bates. Google Scholar

  • [31] A. A. Grigor’yan, The heat equation on noncompact Riemannian manifolds. (Russian) Mat. Sb. 182 (1991), no. 1, 55-87; translation in Math. USSR-Sb. 72 (1992), no. 1, 47-77. Google Scholar

  • [32] L. Hormander, Hypoelliptic second order differential equations, Acta Math. (1967), no. 119, 147-171. Google Scholar

  • [33] D. S. Jerison and A. Sanchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), no. 4, 835-854. Google Scholar

  • [34] O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968 (Russian). Google Scholar

  • [35] G. M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996. Google Scholar

  • [36] F. Ferrari, J. Manfredi and Q. Liu, On the horizontal Mean Curvature Flow for Axisymmetric surfaces in the Heisenberg Group, preprint (2012). Google Scholar

  • [37] J. S. Moll, The anisotropic total variation flow. (English summary) Math. Ann. 332 (2005), no. 1, 177-218. Google Scholar

  • [38] R. Monti and M. Rickly, Convex isoperimetric sets in the Heisenberg group, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009), no. 2, 391-415. Google Scholar

  • [39] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134. Google Scholar

  • [40] A. Nagel, E. M. Stein, and S. Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103-147. Google Scholar

  • [41] S.D. Pauls: Minimal surfaces in the Heisenberg group, Geom. Dedic., (2004), 104, 201-231. Google Scholar

  • [42] M. Ritoré and C. Rosales, Area-stationary surfaces in the Heisenberg group H1, Adv. Math. 219 (2008), 633-671. Web of ScienceGoogle Scholar

  • [43] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247-320. Google Scholar

  • [44] L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D 60 (1992), 259-268. Google Scholar

  • [45] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices 1992 (1992), no. 2, 27-38. Google Scholar

  • [46] F. Serra Cassano and D. Vittone, Graphs of bounded variation, existence and local boundedness of non-parametric minimal surfaces in Heisenberg groups, (accepted for publication in Advances in Calculus of Variations). Google Scholar

  • [47] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.Google Scholar

About the article

Received: 2012-12-29

Accepted: 2013-06-26

Published Online: 2013-08-06

Citation Information: Analysis and Geometry in Metric Spaces, Volume 1, Pages 255–275, ISSN (Online) 2299-3274, DOI: https://doi.org/10.2478/agms-2013-0006.

Export Citation

©2013 Versita Sp. z o.o.. This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Luca Capogna, Giovanna Citti, and Maria Manfredini
Nonlinear Analysis, 2015, Volume 126, Page 437

Comments (0)

Please log in or register to comment.
Log in