[1] M. T. Barlow, R. F. Bass and T. Kumagai, Stability of parabolic Harnack inequalities on metric measure spaces, J.
Math. Soc. Japan 58 (2006), no. 2, 485–519.
Google Scholar

[2] C. Bennett and S. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, 129. Academic Press, Inc.,
Boston, MA, 1988.
Google Scholar

[3] A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, Tracts in Mathematics 17, European Mathematical
Society, 2011.
Google Scholar

[4] Yu. A. Brudnyi and N. Ya. Krugljak, Interpolation functors and interpolation spaces, Vol. I. North-Holland Mathematical
Library, 47. North-Holland Publishing Co., Amsterdam, 1991.
Google Scholar

[5] J. Cerdà, Lorentz capacity spaces, Interpolation theory and applications, Contemp. Math. 445, 45–59, Amer. Math.
Soc., Providence, RI, 2007.
Google Scholar

[6] J. Cerdà, J. Martín and P. Silvestre, Capacitary function spaces, Collectanea Math. 62 (2011), no. 1, 95–118.
Google Scholar

[7] J. Cerdà, J. Martín and P. Silvestre, Conductor Sobolev type estimates and isocapacitary inequalities, to appear in
Indiana Univ. Math. J.
Google Scholar

[8] S. Costea and V. G. Maz’ya, Conductor inequalities and criteria for Sobolev-Lorentz two-weight inequalities, Sobolev
spaces in mathematics. II, 103–121, Int. Math. Ser. (N. Y.) 9 (2009), Springer, New York.
Google Scholar

[9] A. Grigor’yan and A. Telcs, Harnack inequalities and sub-Gaussian estimates for random walks, Math. Ann. 324
(2002), no. 3, 521–556.
Google Scholar

[10] H. Hakkarainen and J. Kinnunen, The BV-capacity in metric spaces, Manuscripta Math. 132 (2010), no. 1-2, 51–73.
Google Scholar

[11] H. Hakkarainen and N. Shanmugalingam, Comparisons of relative BV-capacities and Sobolev capacity in metric
spaces, Nonlinear Anal. 74 (2011), no. 16, 5525–5543.
Google Scholar

[12] J. Kinnunen, R. Korte, N. Shanmugalingam and H. Tuominen, Lebesgue points and capacities via boxing inequality
in metric spaces, Indiana Univ. Math. J. 57 (2008), no. 1, 401–430.
Web of ScienceGoogle Scholar

[13] J. Kinnunen, R. Korte, N. Shanmugalingam and H. Tuominen, The DeGiorgi measure and an obstacle problem
related to minimal surfaces in metric spaces, J. Math. Pures Appl. (9) 93 (2010), no. 6, 599–622.
Web of ScienceGoogle Scholar

[14] V. G. Maz’ya, Conductor and capacitary inequalities for functions on topological spaces and their applications to
Sobolev type imbeddings, J. Funct. Anal. 224 (2005), no. 2, 408–430.
Google Scholar

[15] V. G. Maz’ya, Conductor inequalities and criteria for Sobolev type two-weight imbeddings. J. Comput. Appl. Math.
194 (2006), no. 11, 94–114.
Google Scholar

[16] M. Miranda, Functions of bounded variation on "good" metric spaces, J. Math. Pures Appl. (9) 82 (2003), no. 8,
975–1004.
Google Scholar

[17] J. Orobitg and J. Verdera, Choquet integrals, Hausdorff content and the Hardy-Littlewood maximal operator, Bull.
London Math. Soc. 30 (1998), no. 2, 145–150.
Google Scholar

[18] P. Silvestre, Capacitary function spaces and applications, PhD-thesis (2012), TDR, B. 8121-2012.
www.tesisenred.net/handle/10803/77717Google Scholar

## Comments (0)