Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Analysis and Geometry in Metric Spaces

Ed. by Ritoré, Manuel


IMPACT FACTOR 2018: 0.536

CiteScore 2018: 0.83

SCImago Journal Rank (SJR) 2018: 1.041
Source Normalized Impact per Paper (SNIP) 2018: 0.801

Mathematical Citation Quotient (MCQ) 2017: 0.86

Open Access
Online
ISSN
2299-3274
See all formats and pricing
More options …

On Conditions for Unrectifiability of a Metric Space

Piotr Hajłasz
  • Corresponding author
  • Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Soheil Malekzadeh
  • Corresponding author
  • Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-17 | DOI: https://doi.org/10.1515/agms-2015-0001

Abstract

We find necessary and sufficient conditions for a Lipschitz map f : E ⊂ ℝk → X into a metric space to satisfy ℋk(f(E)) = 0. An interesting feature of our approach is that despite the fact that we are dealing with arbitrary metric spaces, we employ a variant of the classical implicit function theorem. Applications include pure unrectifiability of the Heisenberg groups.

Keywords: geometric measure theory; unrectifiability; metric spaces; Sard theorem; Carnot-Carathéodory spaces

MSC: 49Q15; 53C17

References

  • [1] Ambrosio, L., Kirchheim, B.: Rectifiable sets in metric and Banach spaces. Math. Ann. 318 (2000), 527–555. Google Scholar

  • [2] Ambrosio, L., Kirchheim, B.: Currents in metric spaces. Acta Math. 185 (2000),1–80. Google Scholar

  • [3] Balogh, Z. M., Hajłasz, P., Wildrick, K.: Weak contact equations for mappings into Heisenberg groups. Indiana Univ. Math. J. (to appear). Google Scholar

  • [4] David, G., Semmes, S.: Fractured fractals and broken dreams. Self-similar geometry through metric and measure. Oxford Lecture Series in Mathematics and its Applications, 7. The Clarendon Press, Oxford University Press, New York, 1997. Google Scholar

  • [5] DiBenedetto, E.: Real analysis. Birkhäuser Advanced Texts: Basler Lehrbücher. Google Scholar

  • [Birkhäuser Advanced Texts: Basel Textbooks] Birkhäuser Boston, Inc., Boston, MA, 2002. Google Scholar

  • [6] Evans, L. C., Gariepy, R. F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. Google Scholar

  • [7] Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969 Google Scholar

  • [8] Franchi, B., Gutiérrez, C. E., Wheeden, R. L.: Weighted Sobolev-Poincaré inequalities for Grushin type operators. Comm. Partial Differential Equations 19 (1994), 523–604. Google Scholar

  • [9] Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Google Scholar

  • [10] Gromov, M.: Partial differential relations. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 9. Springer-Verlag, Berlin, 1986. Google Scholar

  • [11] Hajłasz, P.: Change of variables formula under minimal assumptions. Colloq. Math. 64 (1993), 93–101. Google Scholar

  • [12] Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101 pp. Google Scholar

  • [13] Heinonen, J.: Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001. Google Scholar

  • [14] Kirchheim, B.: Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. Amer. Math. Soc. 121 (1994), 113–123. Google Scholar

  • [15] Le Donne, E.: Lipschitz and path isometric embeddings of metric spaces. Geom. Dedicata 166 (2013), 47–66. Google Scholar

  • [16] Magnani, V.: Unrectifiability and rigidity in stratified groups. Arch. Math. (Basel) 83 (2004), 568–576. CrossrefGoogle Scholar

  • [17] Malý, J., Ziemer,W. P.: Fine regularity of solutions of elliptic partial differential equations.Mathematical Surveys and Monographs, 51. American Mathematical Society, Providence, RI, 1997. Google Scholar

  • [18] Martio, O., Väisälä, J.: Elliptic equations and maps of bounded length distortion. Math. Ann. 282 (1988), 423–443. Google Scholar

  • [19] Mattila, P.: Geometry of sets and measures in Euclidean spaces. Cambridge Studies in Advanced Mathematics, Vol. 44. Cambridge University Press, Cambridge, 1995. Google Scholar

  • [20] Monti R.: Distances, boundaries and surface measures in Carnot-Carathéodory spaces, PhD thesis 2001. Available at http://www.math.unipd.it/ monti/PAPERS/TesiFinale.pdf Google Scholar

  • [21] Sternberg, S.: Lectures on differential geometry. Second edition. With an appendix by Sternberg and Victor W. Guillemin. Chelsea Publishing Co., New York, 1983. Google Scholar

  • [22] Varopoulos, N. Th., Saloff-Coste, L., Coulhon, T.: Analysis and geometry on groups. Cambridge Tracts inMathematics, 100. Cambridge University Press, Cambridge, 1992. Google Scholar

  • [23] Whitney, H.: On totally differentiable and smooth functions. Pacific J. Math. 1 (1951), 143–159.Google Scholar

About the article

Received: 2014-03-07

Accepted: 2014-11-15

Published Online: 2014-12-17


Citation Information: Analysis and Geometry in Metric Spaces, Volume 3, Issue 1, ISSN (Online) 2299-3274, DOI: https://doi.org/10.1515/agms-2015-0001.

Export Citation

© 2015 Piotr Hajłasz, Soheil Malekzadeh. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in