Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Analysis and Geometry in Metric Spaces

Ed. by Ritoré, Manuel

1 Issue per year

CiteScore 2016: 0.04

SCImago Journal Rank (SJR) 2016: 0.110
Source Normalized Impact per Paper (SNIP) 2016: 0.026

Mathematical Citation Quotient (MCQ) 2016: 0.78

Emerging Science

Open Access
See all formats and pricing
More options …

On the Hausdorff Dimension of CAT(κ) Surfaces

David Constantine / Jean-François Lafont
  • Corresponding author
  • Wesleyan University, Mathematics and Computer Science Department, Middletown, CT 06459
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-20 | DOI: https://doi.org/10.1515/agms-2016-0010


We prove that a closed surface with a CAT(κ) metric has Hausdorff dimension = 2, and that there are uniform upper and lower bounds on the two-dimensional Hausdorff measure of small metric balls. We also discuss a connection between this uniformity condition and some results on the dynamics of the geodesic flow for such surfaces. Finally,we give a short proof of topological entropy rigidity for geodesic flow on certain CAT(−1) manifolds.

Keywords: metric geometry; Hausdorff dimension; CAT(k) surface; topological entropy


  • [1] M. Bourdon. Structure conforme au bord et flot géodésique d’un CAT(-1)-espace. Enseign. Math., 41(2):63–102, 1995. Google Scholar

  • [2] Marc Bourdon. Sur le birapport au bord des cat(-1)-espaces. Publications mathématiques de l’I.H.É.S., 83:95–104, 1996. Google Scholar

  • [3] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin, 1999. Google Scholar

  • [4] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry, volume 33 of Graduate Studies inMathematics. American Mathematical Society, 2001. Google Scholar

  • [5] J.W. Cannon. Shrinking cell-like decompositions of manifolds. codimension three. Annals of Mathematics, 110(1):83–112, 1979. CrossrefGoogle Scholar

  • [6] Ruth M. Charney and Michael Davis. Strict hyperbolization. Topology, 34(2):329–350, 1995. CrossrefGoogle Scholar

  • [7] Michael Davis and Tadeusz Januszkiewicz. Hyperbolization of polyhedra. J. Differential Geometry, 34(2):347–388, 1991. CrossrefGoogle Scholar

  • [8] Robert D. Edwards. Suspensions of homology spheres. Available at ArXiv:math/0610573. Google Scholar

  • [9] Ursula Hamenstädt. Entropy-rigidity of locally symmetric spaces of negative curvature. Annals ofMathematics, 131(1):35–51, 1990. Google Scholar

  • [10] John G. Hocking and Gail S. Young. Topology. Dover, New York, 1988. Google Scholar

  • [11] Anatole Katok and Boris Hasselblatt. Introduction to the modern theory of dynamical systems. Cambridge University Press, 1995. Google Scholar

  • [12] Enrico Leuzinger. Entropy of the geodesic flow for metic spaces and Bruhat-Tits buildings. Adv. Geom., 6:475–491, 2006. Google Scholar

  • [13] Anthony Manning. Topological entropy for geodesic flows. Annals of Mathematics, 110(3):567–573, 1979. CrossrefGoogle Scholar

  • [14] Pierre Pansu. Dimension conforme et sphère à l’infini des variétés à courbure négative. Ann. Acad. Sci. Fenn. Ser. A IMath., 14(2):177–212, 1989. Google Scholar

  • [15] Jeremy T. Tyson and Jang-Mei Wu. Characterizations of snowflake metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math., 30(2):313–336, 2005. Google Scholar

About the article

Received: 2015-03-02

Accepted: 2016-07-04

Published Online: 2016-09-20

Citation Information: Analysis and Geometry in Metric Spaces, Volume 4, Issue 1, ISSN (Online) 2299-3274, DOI: https://doi.org/10.1515/agms-2016-0010.

Export Citation

© 2016 David Constantine and Jean-François Lafont . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in