Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Analysis and Geometry in Metric Spaces

Ed. by Ritoré, Manuel

Covered by SCOPUS, Web of Science - Science Citation Index Expanded, MathSciNet, and Zentralblatt Math (zbMATH)

IMPACT FACTOR 2018: 0.536

CiteScore 2018: 0.83

SCImago Journal Rank (SJR) 2018: 1.041
Source Normalized Impact per Paper (SNIP) 2018: 0.801

Mathematical Citation Quotient (MCQ) 2018: 0.83

Open Access
See all formats and pricing
More options …

A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries

Enrico Le Donne
Published Online: 2018-01-04 | DOI: https://doi.org/10.1515/agms-2017-0007


Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We present the basic theory of Carnot groups together with several remarks.We consider them as special cases of graded groups and as homogeneous metric spaces.We discuss the regularity of isometries in the general case of Carnot-Carathéodory spaces and of nilpotent metric Lie groups.

Keywords : Carnot groups; sub-Riemannian geometry; sub-Finsler geometry; homogeneous spaces; homogeneous groups; nilpotent groups; metric groups

MSC 2010: 53C17; 43A80; 22E25; 22F30; 14M17


  • [1] Andrei Agrachev and Davide Barilari, Sub-Riemannian structures on 3D Lie groups, J. Dyn. Control Syst. 18 (2012), no. 1, 21-44.Google Scholar

  • [2] Andrei Agrachev, Davide Barilari, and Ugo Boscain, On the Hausdorff volume in sub-Riemannian geometry, Calc. Var. Partial Differential Equations 43 (2012), no. 3-4, 355-388.Google Scholar

  • [3] , Introduction to Riemannian and Sub-Riemannian geometry, Manuscript (2015).Google Scholar

  • [4] Luigi Ambrosio and Bernd Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), no. 1, 1-80.Google Scholar

  • [5] , Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), no. 3, 527-555.Google Scholar

  • [6] Luigi Ambrosio, Bruce Kleiner, and Enrico Le Donne, Rectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplane, J. Geom. Anal. 19 (2009), no. 3, 509-540.CrossrefGoogle Scholar

  • [7] Luigi Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math. 159 (2001), no. 1, 51-67.Google Scholar

  • [8] , Fine properties of sets of finite perimeter in doubling metric measure spaces, Set-Valued Anal. 10 (2002), no. 2-3, 111-128, Calculus of variations, nonsmooth analysis and related topics.Google Scholar

  • [9] Luigi Ambrosio, Francesco Serra Cassano, and Davide Vittone, Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal. 16 (2006), no. 2, 187-232.CrossrefGoogle Scholar

  • [10] Dmitri˘ı Burago, Yuri˘ı Burago, and Sergei˘ı Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001.Google Scholar

  • [11] André Bellaïche, The tangent space in sub-Riemannian geometry, Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 1-78.Google Scholar

  • [12] Costante Bellettini and Enrico Le Donne, Regularity of sets with constant horizontal normal in the Engel group, Comm. Anal. Geom. 21 (2013), no. 3, 469-507.CrossrefGoogle Scholar

  • [13] Valeri˘ı N. Berestovski˘ı, Homogeneous manifolds with an intrinsic metric. I, Sibirsk. Mat. Zh. 29 (1988), no. 6, 17-29.Google Scholar

  • [14] Yuri˘ı Burago, Mikhail Gromov, and Grigori˘ı Perel0man, A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992), no. 2(284), 3-51, 222.Google Scholar

  • [15] Mario Bonk and Bruce Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), no. 1, 127-183.Google Scholar

  • [16] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007.Google Scholar

  • [17] Mladen Bestvina and Geoffrey Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991), no. 3, 469-481.CrossrefGoogle Scholar

  • [18] Marc Bourdon and Hervé Pajot, Rigidity of quasi-isometries for somehyperbolic buildings, Comment.Math. Helv. 75 (2000), no. 4, 701-736.CrossrefGoogle Scholar

  • [19] Davide Barilari and Luca Rizzi, A formula for Popp’s volume in sub-Riemannian geometry, Anal. Geom. Metr. Spaces 1 (2013), 42-57.Google Scholar

  • [20] Emmanuel Breuillard and Enrico Le Donne, Nilpotent groups, asymptotic cones and subFinsler geometry, In preparation.Google Scholar

  • [21] , On the rate of convergence to the asymptotic cone for nilpotent groups and subFinsler geometry, Proc. Natl. Acad. Sci. USA 110 (2013), no. 48, 19220-19226.Google Scholar

  • [22] Vittorio Barone Adesi, Francesco Serra Cassano, and Davide Vittone, The Bernstein problem for intrinsic graphs in Heisenberg groups and calibrations, Calc. Var. Partial Differential Equations 30 (2007), no. 1, 17-49.Google Scholar

  • [23] C. Carathéodory, Untersuchungen über die Grundlagen der Thermodynamik, Math. Ann. 67 (1909), no. 3, 355-386.Google Scholar

  • [24] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406-480.Google Scholar

  • [25] Luca Capogna and Michael Cowling, Conformality and Q-harmonicity in Carnot groups, Duke Math. J. 135 (2006), no. 3, 455-479.Google Scholar

  • [26] Luca Capogna, Donatella Danielli, Scott D. Pauls, and Jeremy T. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Progress in Mathematics, vol. 259, Birkhäuser Verlag, Basel, 2007.Google Scholar

  • [27] Lawrence J. Corwin and Frederick P. Greenleaf, Representations of nilpotent Lie groups and their applications. Part I, Cambridge Studies in Advanced Mathematics, vol. 18, Cambridge University Press, Cambridge, 1990, Basic theory and examples.Google Scholar

  • [28] Jeff Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428-517.CrossrefGoogle Scholar

  • [29] Jeff Cheeger and Bruce Kleiner, On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces, Inspired by S. S. Chern, Nankai Tracts Math., vol. 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 129-152.CrossrefGoogle Scholar

  • [30] , Differentiating maps into L1, and the geometry of BV functions, Ann. of Math. (2) 171 (2010), no. 2, 1347-1385.Google Scholar

  • [31] , Metric differentiation, monotonicity and maps to L1, Invent. Math. 182 (2010), no. 2, 335-370.Google Scholar

  • [32] Luca Capogna and Enrico Le Donne, Smoothness of subRiemannian isometries, Amer. J.Math. 138 (2016), no. 5, 1439-1454.Google Scholar

  • [33] Daniel R. Cole and Scott D. Pauls, C1 hypersurfaces of the Heisenberg group are N-rectifiable, Houston J. Math. 32 (2006), no. 3, 713-724 (electronic). MR MR2247905 (2007f:53032)Google Scholar

  • [34] D. Danielli, N. Garofalo, and D. M. Nhieu, A notable family of entire intrinsic minimal graphs in the Heisenberg group which are not perimeter minimizing, Amer. J. Math. 130 (2008), no. 2, 317-339.Google Scholar

  • [35] Katrin Fässler, Pekka Koskela, and Enrico Le Donne, Nonexistence of quasiconformal maps between certain metric measure spaces, Int. Math. Res. Not. IMRN (2015), no. 16, 6968-6987.Google Scholar

  • [36] G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups,Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J., 1982.Google Scholar

  • [37] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano, On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal. 13 (2003), no. 3, 421-466.Google Scholar

  • [38] Roberta Ghezzi and Frédéric Jean, Hausdorff measure and dimensions in non equiregular sub-Riemannian manifolds, GeometricGoogle Scholar

  • control theory and sub-Riemannian geometry 5 (2014), 201-218.Google Scholar

  • [39] Andrew M. Gleason, Groups without small subgroups, Ann. of Math. (2) 56 (1952), 193-212.Google Scholar

  • [40] Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981), no. 53, 53-73.Google Scholar

  • [41] Mikhail Gromov, Carnot-Carathéodory spaces seen from within, Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 79-323.Google Scholar

  • [42] , Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, BirkhäuserGoogle Scholar

  • Boston Inc., Boston, MA, 1999, Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates.Google Scholar

  • [43] Mikhail Gromov and Richard Schoen, Harmonic maps into singular spaces and p-adic superrigidity for lattices in groupsGoogle Scholar

  • of rank one, Inst. Hautes Études Sci. Publ. Math. (1992), no. 76, 165-246.Google Scholar

  • [44] Ursula Hamenstädt, Some regularity theorems for Carnot-Carathéodory metrics, J. Differential Geom. 32 (1990), no. 3, 819-850.Google Scholar

  • [Hei74] Ernst Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23-34. MR 0353210Google Scholar

  • [Hei95] Juha Heinonen, Calculus on Carnot groups, Fall School in Analysis (Jyväskylä, 1994), Report, vol. 68, Univ. Jyväskylä, Jyväskylä, 1995, pp. 1-31.Google Scholar

  • [47] , Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001.Google Scholar

  • [48] Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, ActaMath. 181 (1998), no. 1, 1-61.Google Scholar

  • [49] Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101.Google Scholar

  • [50] Waldemar Hebisch and Adam Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math.Google Scholar

  • 96 (1990), no. 3, 231-236.Google Scholar

  • [51] Frédéric Jean, Control of nonholonomic systems: from sub-Riemannian geometry to motion planning, Springer Briefs inGoogle Scholar

  • Mathematics, Springer, Cham, 2014.Google Scholar

  • [52] David Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J. 53 (1986), no. 2, 503-523.Google Scholar

  • [53] Ilya Kapovich and Nadia Benakli, Boundaries of hyperbolic groups, Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math., vol. 296, Amer. Math. Soc., Providence, RI, 2002, pp. 39-93.Google Scholar

  • [54] Bruce Kleiner and Bernhard Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. HautesGoogle Scholar

  • Études Sci. Publ. Math. (1997), no. 86, 115-197 (1998).Google Scholar

  • [55] Ville Kivioja and Enrico Le Donne, Isometries of nilpotent metric groups, J. Éc. polytech. Math. 4 (2017), 473-482. MRGoogle Scholar

  • 3646026Google Scholar

  • [56] A. Korányi and H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985), no. 2, 309-338.Google Scholar

  • [57] , Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math. 111 (1995), no. 1, 1-87.Google Scholar

  • [58] Bernd Kirchheim and Francesco Serra Cassano, Rectifiability and parameterization of intrinsic regular surfaces in theGoogle Scholar

  • Heisenberg group, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), no. 4, 871-896.Google Scholar

  • [59] Tomi J. Laakso, Plane with A1-weighted metric not bi-Lipschitz embeddable to RN, Bull. London Math. Soc. 34 (2002), no. 6, 667-676.Google Scholar

  • [60] Enrico Le Donne, Lipschitz and path isometric embeddings of metric spaces, Geom. Dedicata 166 (2013), 47-66.Google Scholar

  • [61] , Lecture notes on sub-Riemannian geometry, Manuscript (2015).Google Scholar

  • [62] , A metric characterization of Carnot groups, Proc. Amer. Math. Soc. 143 (2015), no. 2, 845-849.Google Scholar

  • [63] Enrico Le Donne and Sebastiano Nicolussi Golo, Regularity properties of spheres in homogeneous groups, Trans. Amer. Math. Soc. (2016).Google Scholar

  • [64] , Homogeneous distances on Lie groups, Preprint, https://sites.google.com/site/enricoledonne/ (2017).Google Scholar

  • [65] Enrico Le Donne and Alessandro Ottazzi, Isometries of Carnot Groups and Sub-Finsler Homogeneous Manifolds, J. Geom. Anal. 26 (2016), no. 1, 330-345.Google Scholar

  • [66] Urs Lang and Conrad Plaut, Bilipschitz embeddings of metric spaces into space forms, Geom. Dedicata 87 (2001), no. 1-3, 285-307.Google Scholar

  • [67] Enrico Le Donne and Séverine Rigot, Besicovitch Covering Property for homogeneous distances on the Heisenberg groups, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 5, 1589-1617. MR 3635362Google Scholar

  • [68] , Besicovitch Covering Property on graded groups and applications tomeasure differentiation, J. Reine Angew.Math. (2017).Google Scholar

  • [69] Enrico Le Donne and Roger Züst, Some properties of Hölder surfaces in the Heisenberg group, Illinois J. Math. 57 (2013), no. 1, 229-249.Google Scholar

  • [70] Valentino Magnani, Elements of geometric measure theory on sub-Riemannian groups, Scuola Normale Superiore, Pisa, 2002.Google Scholar

  • [71] , Non-horizontal submanifolds and coarea formula, J. Anal. Math. 106 (2008), 95-127.Google Scholar

  • [72] John Mitchell, On Carnot-Carathéodory metrics, J. Differential Geom. 21 (1985), no. 1, 35-45.Google Scholar

  • [73] Gregori A.Margulis and George D. Mostow, The differential of a quasi-conformal mapping of a Carnot-Carathéodory space, Geom. Funct. Anal. 5 (1995), no. 2, 402-433.Google Scholar

  • [74] G. A. Margulis and G. D. Mostow, Some remarks on the definition of tangent cones in a Carnot-Carathéodory space, J. Anal. Math. 80 (2000), 299-317.CrossrefGoogle Scholar

  • [75] Richard Montgomery, A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, vol. 91, American Mathematical Society, Providence, RI, 2002.Google Scholar

  • [76] Roberto Monti, Francesco Serra Cassano, and Davide Vittone, A negative answer to the Bernstein problem for intrinsic graphs in the Heisenberg group, Boll. Unione Mat. Ital. (9) 1 (2008), no. 3, 709-727.Google Scholar

  • [77] Valentino Magnani and Davide Vittone, An intrinsic measure for submanifolds in stratified groups, J. Reine Angew. Math. 619 (2008), 203-232.Google Scholar

  • [78] Deane Montgomery and Leo Zippin, Topological transformation groups, Robert E. Krieger Publishing Co., Huntington, N.Y., 1974, Reprint of the 1955 original.Google Scholar

  • [79] Giuseppe Mingione, Anna Zatorska-Goldstein, and Xiao Zhong, Gradient regularity for elliptic equations in the Heisenberg group, Adv. Math. 222 (2009), no. 1, 62-129.Google Scholar

  • [80] Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103-147.Google Scholar

  • [81] Pierre Pansu, Géometie du goupe d’Heisenberg, Thesis, Universite Paris VII (1982).Google Scholar

  • [82] , Une inégalité isopérimétrique sur le groupe de Heisenberg, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 2, 127-130.Google Scholar

  • [83] , Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 415-445.Google Scholar

  • [84] , An isoperimetric inequality on the Heisenberg group, Rend. Sem. Mat. Univ. Politec. Torino (1983), no. Special Issue, 159-174 (1984), Conference on differential geometry on homogeneous spaces (Turin, 1983).Google Scholar

  • [85] , Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1-60.Google Scholar

  • [86] Scott D. Pauls, Minimal surfaces in the Heisenberg group, Geom. Dedicata 104 (2004), 201-231.Google Scholar

  • [87] Ludovic Riff ord, Sub-Riemannian geometry and optimal transport, Springer Briefs in Mathematics, Springer, Cham, 2014.Google Scholar

  • [88] Manuel Ritoré, Examples of area-minimizing surfaces in the sub-Riemannian Heisenberg group H1 with low regularity, Calc. Var. Partial Differential Equations 34 (2009), no. 2, 179-192.Google Scholar

  • [89] Manuel Ritoré and César Rosales, Area-stationary surfaces in the Heisenberg group H1, Adv. Math. 219 (2008), no. 2, 633-671.Google Scholar

  • [90] Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247-320.Google Scholar

  • [91] Francesco Serra Cassano, Some topics of geometric measure theory in carnot groups, Dynamics, geometry and analysis on sub-Riemannian manifolds (2016), To appear.Google Scholar

  • [92] Stephen Semmes, Good metric spaces without good parameterizations, Rev. Mat. Iberoamericana 12 (1996), no. 1, 187-275.Google Scholar

  • [93] , On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A1-weights, Rev. Mat. Iberoamericana 12 (1996), no. 2, 337-410.Google Scholar

  • [94] Yehuda Shalom, Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, ActaMath. 192 (2004), no. 2, 119-185.Google Scholar

  • [95] Eberhard Siebert, Contractive automorphisms on locally compact groups, Math. Z. 191 (1986), no. 1, 73-90.Google Scholar

  • [96] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, PrincetonMathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. MR MR1232192 (95c:42002)Google Scholar

  • [97] Robert S. Strichartz, Sub-Riemannian geometry, J. Differential Geom. 24 (1986), no. 2, 221-263.Google Scholar

  • [98] Davide Vittone, Submanifolds in Carnot groups, Tesi. Scuola Normale Superiore di Pisa (Nuova Series) [Theses of Scuola Normale Superiore di Pisa (New Series)], vol. 7, Edizioni della Normale, Pisa, 2008, Thesis, Scuola Normale Superiore, Pisa, 2008.Google Scholar

  • [99] N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992. MR MR1218884 (95f:43008)Google Scholar

  • [100] FrankW.Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts inMathematics, vol. 94, Springer-Verlag, New York, 1983, Corrected reprint of the 1971 edition.Google Scholar

  • [101] Joseph A. Wolf, On locally symmetric spaces of non-negative curvature and certain other locally homogeneous spaces, Comment. Math. Helv. 37 (1962/1963), 266-295.Google Scholar

  • [102] Xiangdong Xie, Large scale geometry of negatively curved Rn o R, Geom. Topol. 18 (2014), no. 2, 831-872.CrossrefGoogle Scholar

  • [103] Hidehiko Yamabe, A generalization of a theorem of Gleason, Ann. of Math. (2) 58 (1953), 351-365. MR 0058607Google Scholar

About the article

Received: 2016-11-18

Revised: 2017-09-07

Accepted: 2017-11-08

Published Online: 2018-01-04

Citation Information: Analysis and Geometry in Metric Spaces, Volume 5, Issue 1, Pages 116–137, ISSN (Online) 2299-3274, DOI: https://doi.org/10.1515/agms-2017-0007.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Armin Schikorra
Aequationes mathematicae, 2020
Leandro Candido, Marek Cúth, and Michal Doucha
Journal of Functional Analysis, 2019, Volume 277, Number 8, Page 2697

Comments (0)

Please log in or register to comment.
Log in