Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Geologica Polonica

The Journal of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.917
5-year IMPACT FACTOR: 1.418

CiteScore 2016: 1.15

SCImago Journal Rank (SJR) 2016: 0.507
Source Normalized Impact per Paper (SNIP) 2016: 0.755

Open Access
Online
ISSN
2300-1887
See all formats and pricing
More options …

High (ultrahigh) pressure metamorphic terrane rocks as the source of the detrital garnets from the Middle Jurassic sands and sandstones of the Cracow Region (Cracow-Wieluń Upland, Poland)

Štefan Méres
  • Department of Geochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina - G, 842 15 Bratislava, Slovakia.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roman Aubrecht
  • Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina - G, 842 15 Bratislava, Slovakia
  • Geophysical Institute, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 28 Bratislava, Slovakia.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michał Gradziński / Milan Sýkora
  • Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina - G, 842 15 Bratislava, Slovakia.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-11-13 | DOI: https://doi.org/10.2478/v10263-012-0012-0

ABSTRACT

Aubrecht, R., Meres, Š., Gradziński, M. and Sykora, M. 2012. High (ultrahigh) pressure metamorphic terrane rocks as the source of the detrital garnets from the Middle Jurassic sands and sandstones of the Cracow Region (Cracow- Wieluń Upland, Poland). Acta Geologica Polonica, 62 (2), 231-245. Warszawa. The Middle Jurassic (Upper Bathonian/Lower Callovian) sands and sandstones of the Cracow-Wieluń Upland contain detrital garnets with high contents of the pyrope molecule (30-73 mol %). The predominance of detrital pyrope garnets, and inclusions represented mainly by omphacite and kyanite, show that the garnets were derived from high (ultrahigh) pressure (H/UHP) metamorphic terrane rocks (garnet peridotites, eclogites and granulites). Their source is unknown. The Moldanubian Zone of the Bohemian Massif is closely comparable. However, the terranes between this zone and the Cracow- Wieluń Upland are dominated by almandine garnets. The relatively low proportion of almandine garnets in the examined samples indicates that transport of the detrital material could not have been from a far distant source as the garnet assemblage would otherwise be strongly dominated by almandine. A less distant possible source could have been the Gory Sowie Mts., which incorporate UHP/HP metamorphic rocks, but the exposed areal extent of these rocks is too small. It is possible that larger portions of these metamorphic rocks are buried beneath the Cenozoic cover and might have earlier represented a larger source area. Reworking of the entire heavy mineral spectra from older clastics is improbable because of the low maturity of the heavy mineral assemblages (higher proportion of less stable minerals). The source area therefore remains unknown. Most probably it was formed by primary crystalline complexes of lower crust to mantle origin, outcrops of which were not far distant from the area of deposition. Similar detrital garnet compositions were also recorded in the Outer Western Carpathians (Flysch Zone, Pieniny Klippen Belt), i.e. the crustal segments which formed the Silesian and Magura cordilleras; the Czorsztyn Swell was also formed by similar rocks.

Keywords : Detrital garnets; Provenance analysis; Jurassic; Polish platform.

  • Aubrecht, R. 1993. Clastic admixture in Dogger crinoidal limestones of Czorsztyn Unit. Geologica Carpathica, 44, 105-111.Google Scholar

  • Aubrecht, R. 2001. Jurassic heavy mineral distribution provinces of the Western Carpathians. Mineralia Slovaca, 33, 473-486.Google Scholar

  • Aubrecht, R. and Meres, Š. 1999. Possible Moldanubic provenance of the Pieniny Klippen Belt crystalline basement deduced from detrital garnets. Carpathian Geology 2000 symp., Smolenice, 11th-14th Oct. 1999. Geologica Carpathica, 50 (special issue), 13-14.Google Scholar

  • Aubrecht, R. and Meres, Š. 2000. Exotic detrital almandinepyrope garnets in the Jurassic sediments of the Pieniny Klippen Belt and Tatric Zone: where did they come from? Mineralia Slovaca, 32, 17-28.Google Scholar

  • Aubrecht, R., Meres, Š., Sykora, M. and Mikuš, T. 2009. Provenance of the detrital garnets and spinels from the Albian sediments of the Czorstyn Unit (Pieniny Klippen Belt, Western Carpathians, Slovakia). Geologica Carpathica, 60, 463-483.Google Scholar

  • Best, M.G. 2003. Igneous and metamorphic petrology. Wiley-Blackwell, 1-729. [2nded.]Google Scholar

  • Biernacka, J. and Jozefiak, M. 2009. The Eastern Sudetic Island in the Early-to-Middle Turonian: evidence from heavy minerals in the Jerzmanice sandstones, SW Poland. Acta Geologica Polonica, 59, 545-565.Google Scholar

  • Carswell, D.A. 1990. Eclogites and the eclogite facies: Definitions and classifications, In: D.A. Carswell (Ed.), Eclogite facies rocks. Glasgow, Blackie, pp. 1-13.Google Scholar

  • Čopjakova, R., Sulovsky, P. and Otava, J. 2001. Utilization of detrital garnet chemistry for determination of the provenance and lithostratigraphy of the Culm of Drahany Upland. Mineralia Slovaca, 33, 509-511. [In Czech]Google Scholar

  • Čopjakova, R., Sulovsky, P. and Paterson, B.A. 2005. Major and trace elements in pyrope-almandine garnets as sediment provenance indicators of the Lower Carboniferous Culm sediments, Drahany Uplands, Bohemian Massif. Lithos, 82, 81-70.Google Scholar

  • Dembicz, K., Praszkier, T., Głowniak, E. and Matyja, B.A., 2006. Stop B1.1 - Młynka Quarry, Callovian to Middle Oxfordian succession. In: A. Wierzbowski, R. Aubrecht, J. Golonka, J. Gutowski, M. Krobicki, B.A. Matyja, G. Pieńkowski and A Uchman (Eds), Jurassic of Poland and adjacent Slovakian Carpathians. Field trip guidebook of 7th International Congress on the Jurassic System, pp. 138-141. Warszawa.Google Scholar

  • Desmons, J. and Smulikowski, W. 2004. A systematic nomenclature for metamorphic rocks: High P/T metamorphic rocks. Recommendation by the IUGS Subcommission on the Systematics of Metamorphic Rocks: (SCMR website www.bgs.ac.uk/SCMR).Google Scholar

  • Dżułyński, S. 1950. Littoral deposits of the Middle Jurassic South of Krzeszowice. Rocznik Polskiego Towarzystwa Geologicznego, 19, 387-400. [In Polish with English summary]Google Scholar

  • Ernst, W.G. and Liou, J.G. (Ed.) 2000. Ultrahigh-pressure metamorphism and geodynamics in collision-type orogenic belts. Final Report of the Task Group III-6 of the International Litosphere Project. Geological Society of America, Columbia, 4, 1-293.Google Scholar

  • Faupl, P. 1975. Kristallinvorkommen und terrigene Sedimentgesteine in der Grestener Klippenzone (Lias-Neokom) von Ober und Niederosterreich. Ein Beitrag zur Herkunft und Genese. Jahrbuch der Geologischen Bundesanstalt, 118, 1-74.Google Scholar

  • Giżejewska, M. and Wieczorek, J. 1976. Remarks on the Callovian and Lower Oxfordian of the zalas area (Cracow Upland, Southern Poland). Bulletin de l’Academia Polonaise des Sciences, Série des Sciences de la Terre, 24, 167-175.Google Scholar

  • Grzebyk, J. and Leszczyński, S. 2006. New data on heavy minerals from the Upper Cretaceous-Paleogene flysch of the Beskid Śląski Mts. (Polish Carpathians). Geological Quarterly, 50, 265-280.Google Scholar

  • Hansley, P. 1987. Petrologic and experimental evidence for the etching of garnets by organic acids in the Upper Jurassic Morisson Formation, Northwestern New Mexico. Journal of Sedimentary Petrology, 57, 666-681.Google Scholar

  • Hartley, A.J. and Otava J. 2001. Sediment provenance in a deep marine foreland basin: the Lower Carboniferous Culm Basin, Czech Republic. Journal of the Geological Society, London, 158, 137-150.CrossrefGoogle Scholar

  • Hoffmann, M. and Gradziński, M. 2004. Facies variation in Callovian deposits of the Cracow region (southern Poland) as an effect of basement topography and sensedimentary tectonic activity. In: L. Pena dos Reis, P. Callapez and P. Dinis (Eds): 23rdMeeting of Sedimentology, Abstract Book. International Association of Sedimentologists, Coimbra, p. 144.Google Scholar

  • Hubert, J.F. 1962. A zircon-tourmaline maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Petrology, 32, 440-450.Google Scholar

  • Janoušek, V., Gerdes, A., Vrana, S., Finger, F., Erban, V., Friedl, G. and Braithwaite, C.J.R. 2006. Low-pressure Granulites of the Lišov Massif, Southern Bohemia: Visean Metamorphism of Late Devonian Plutonic Arc Rocks. Journal of Petrology, 47, 705-744.Google Scholar

  • Janoušek, V., Krenn, E., Finger, F., Mikova, J. and Fryda, J. 2007. Hyperpotassic granulites from the Blansky les Massif (Moldanubian Zone, Bohemian Massif) revisited. Journal of Geosciences, 52, 73-112.Google Scholar

  • Kopik, J. 1997. Lithostratigraphy and lithofacies. Formal and informal lithostratigraphic units. Polish Jura. Prace Państwowego Instytutu Geologicznego, 153, 263 pp. [In Polish]Google Scholar

  • Kretz, R. 1983. Symbols for rock forming minerals, American Mineralogist, 68, 277-279.Google Scholar

  • Krogh Ravna, E.J. and Terry, M.P. 2004. Geothermobarometry of UHP and HP eclogites and schists - an evaluation of equilibria among garnet-clinopyroxene-kyanite-phengite-coesite/quartz. Journal of Metamorphic Geology, 22, 579-592.CrossrefGoogle Scholar

  • Krysowska, M. 1960. Heavy mineral assemblages in Brown Jurassic deposits from Krzeszowice. Biuletyn Instytutu Geologicznego, 152, 289-320. [In Polish]Google Scholar

  • Krysowska, M. 1962. Petrographical analysis of the Middle Jurassic formations from Rzeszotary. Rocznik Polskiego Towarzystwa Geologicznego, 32, 565-578. [In Polish]Google Scholar

  • Kryza, R., Pin, C. and Vielzeuf, D. 1996. High-pressure granulites from the Sudetes (south-west Poland): evidence of crustal subduction and collisional thickening in the Variscan Belt. Journal of Metamorphic Geology, 14, 531-546.CrossrefGoogle Scholar

  • Liou, J.G., Tsujimori, T., Zhang, R.Y., Katayama, I. and Maruyama, S. 2004. Global UHP metamorphism and continental subduction/collision: the Himalayan model. International Geology Review, 46, 1-27.CrossrefGoogle Scholar

  • Łoziński, J. 1956. Heavy minerals of the Aalenian flysch sandstones in the Pieniny Klippen Belt. Acta Geologica Polonica, 6, 17-23. [In Polish]Google Scholar

  • Łoziński, J. 1957. Comparison of heavy mineral assemblages from the Podhale Flysch, Flysch Aalenian in the Pieniny Klippen Belt and the Jurassic exotics from Bachowice. Rocznik Polskiego Towarzystwa Geologicznego, 26, 157-164. [In Polish]Google Scholar

  • Łoziński, J. 1966. Detritic minerals in flysch sandstones of the Pieniny Klippen Belt and adjacent neighbouring. Prace Geologiczne PAN, 37, 1-57. [In Polish]Google Scholar

  • Łydka, K. 1955. Petrographic studies concerning the Permo-Carboniferous of the Cracow region. Biuletyn Instytutu Geologicznego, 97, 123-215. [In Polishwith English summary]Google Scholar

  • Matyszkiewicz, J. and Krajewski, M. 2007. Lithology and facies variation of the Upper Jurassic limestones of Szklarka and Będkowka valleys. Tomy Jurajskie, 4, 87-93. [In Polish]Google Scholar

  • Massonne, H.J. and Bautsch, H.J. 2004. Ultrahigh and High Pressure Rocks of Saxony. In: 32nd IGC, Florence - Italy, August 20-28, 2004, Field Trip Guide Book - B21, 2, 1-36.Google Scholar

  • Medaris, L.G., Jr., Beard, B.L., Johnson, C.M., Valley, J.W., Spicuzza, M.J., Jelinek, E. and Misař, Z. 1995a. Garnet pyroxenite and eclogite in the Bohemian Massif: Geochemical evidence for Variscan recycling of subducted lithosphere. Geologische Rundschau, 84, 489-505.CrossrefGoogle Scholar

  • Medaris, L.G., Jr., Jelinek, E. and Misař, Z. 1995b. Czech eclogites: Terrane settings and implications for Variscan tectonic evolution of the Bohemian Massif. European Journal of Mineralogy, 7, 7-78.Google Scholar

  • Medaris, L.G., Fournelle, J.H., Ghent, E.D., Jelinek, E. and Misař, Z. 1998. Prograde eclogites in the Gfohl Nappe, Czech Republic: new evidence on Variscan high-pressure metamorphism. Journal of Metamorphic Geology, 16, 563-576.CrossrefGoogle Scholar

  • Medaris, L.G., (Jr), Wang, H., Jelinek, E., Mihaljevič, M. and Jakeš, P. 2005. Characteristics and origins of diverse Variscan peridotites in the Gfohl nappe, Bohemian Massif, Czech Republic. Lithos, 82, 1-23.CrossrefGoogle Scholar

  • Medaris (Jr) L.G., Beard, B.L. and Jelinek, E. 2006a. Mantle-Derived, UHP Garnet Pyroxenite and Eclogite in the Moldanubian Gfohl Nappe, Bohemian Massif: A Geochemical Review, New P-T Determinations, and Tectonic Interpretation. International Geological Reviews, 48, 765-777.CrossrefGoogle Scholar

  • Medaris (Jr) L. G., Ghent, E. D., Wang, H. F., Fournelle, J. H., and Jelinek, E. 2006b. The Spačice eclogite: Constraints on the P-T-t history of the Gfohl granulite terrane, Moldanubian Zone, Bohemian Massif. Mineralogy and Petrology, 86, 203-220.CrossrefGoogle Scholar

  • Meres, Š. 2008. Garnets - important information resource about source area and parental rocks of the siliciclastic sedimentary rocks. In: Jurkovič, Ľ. (Ed.), Conference „Cambelove dni 2008“, Comenius Univ. Bratislava, Abstract book, 37-43. [In Slovak with English abstract]Google Scholar

  • Meres, Š. 2009. Express identification of the detrital garnets from UHP/HP metamorphic rocks using simple triangle diagrams prp-alm-grs and prp-alm-sps. In: Micro-Analysis, Processes, Time - MAPT, 30thAugust-4thSeptember 2009, Univ. Edinburgh, UK: Mineralogical Society, 134-135.Google Scholar

  • Messiga, B. and Bettini E. 1990. Reactions behaviour during kelyphite and symplectite formation: a case study of mafic granulites and eclogites from the Bohemian Massif. European Journal of Mineralogy, 2, 125-144.Google Scholar

  • Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifeit, F.A. and Zussman, J. 1989. Nomenclature of pyroxenes. Canadian Mineralogist, 27, 143-156.Google Scholar

  • Morton, A.C. 1987. Influences of provenance and diagenesis on detrital garnet suites in the Paleocene Forties Sandstone, Central North Sea. Journal of Sedimentary Petrology, 57, 1027-1032.Google Scholar

  • Nakamura, D., Svojtka, M. Naemura, K. and Hirajima, T. 2004. Very high-pressure (>4 GPa) eclogite associated with the Moldanubian Zone garnet peridotite (Nove Dvory, Czech Republic). Journal of Metamorphic Geology, 22, 593-603.CrossrefGoogle Scholar

  • Oberc, J. 1972. Geological structure of Poland. Tectonics - 2. Wydawnictwa Geologiczne; Warszawa, 1-307. [In Polish]Google Scholar

  • O’Brien, P.J. and Vrana, S. 1995. Eclogites with a short-lived granulite facies overprint in the Moldanubian Zone, Czech Republic: petrology, geochemistry and diffusion modeling of garnet zoning. Geologische Rundschau, 84, 473-488.CrossrefGoogle Scholar

  • O’Brien, P.J., Kroner, A., Jaeckel, P., Hegner, E., Żelazniewicz, A. and Kryza, R. 1997. Petrological and isotopic studies on Paleozoic high-pressure granulites, Gory Sowie Mts, Polish Sudetes. Journal of Petrology, 38, 433-456.CrossrefGoogle Scholar

  • Ogg, J.G., Steiner, M.B., Wieczorek, J. and Hoffmann, M. 1991. Jurassic magnetostratigraphy, 4. Early Callovian through Middle Oxfordian of the Krakow Uplands (Poland). Earth and Planetary Science Letters, 104, 488-504.CrossrefGoogle Scholar

  • Oszczypko, N. and Salata, D. 2005. Provenance analyses of the Late Cretaceous - Palaeocene deposits of the Magura Basin (Polish Western Carpathians) - evidence from a study of the heavy minerals. Acta Geologica Polonica, 55, 237-267.Google Scholar

  • Otava, J., Krejči, O. and Sulovsky, P. 1997. The first results of study of garnet chemistry from the sandstones of the Rača Unit of the Magura Flysch. Geologicky vyzkum Moravy a Slezska v r. 1996, 39-42. [In Czech]Google Scholar

  • Otava, J. and Sulovsky, P. 1998. Detrital garnets and chromites from the Ksiaz Formation, Swiebodzice Depression: implications for the Variscan evolution of Sudetes. Geolines, 6, 49-50.Google Scholar

  • Otava, J., Sulovsky, P. and Krejči, O. 1998. The results of the chemistry of the detrital garnets from the Cretaceous sediments of the Rača Unit, Magura Group. Geologicky vyzkum Moravy a Slezska v r. 1997, 10-12. [In Czech]Google Scholar

  • Otava, J., Sulovsky, P. and Čopjakova, R. 2000. Changes in provenance of greywackes from the Drahany Culm Basin: statistical evaluation. Geologicky vyzkum Moravy a Slezska v r. 1999, 94-98. [In Czech]Google Scholar

  • Paszkowski, M., Jachowicz, M., Michalik, M., Teller, L., Uchman, A. and Urbanek Z. 1995. Composition, age and provenance of gravel-sized clasts from the Upper Carboniferous of the Upper Silesia Coal Basin (Poland). Studia Geologica Polonica, 108, 45-127.Google Scholar

  • Przybyłowicz, T. 1958. Petrographic studies of clastic Jurassic rocks of the Cracow region. Archiwum mineralogiczne, 22, 153-186. [In Polish with English summary]Google Scholar

  • Racek, M., Štipska, P. and Powell, R. 2008. Garnet-clinopyroxene intermediate granulites in the St. Leonhard massif of the Bohemian Massif: ultrahigh-temperature metamorphism at high pressure or not? Journal of Metamorphic Geology, 26, 253-271.CrossrefGoogle Scholar

  • Salata, D. 2004. Detrital garnets from the Upper Cretaceous-Paleogene sandstones of the Polish part of the Magura Nappe and the Pieniny Klippen Belt: chemical constraints. Annales Societatis Geologorum Poloniae, 74, 351-364.Google Scholar

  • Scharbert, H.G., and Carswell, D.A. 1983. Petrology of garnetclinopyroxene rocks in a granulite-facies environment, Bohemian massif of Lower Austria. Bulletin of Mineralogy, 106, 761-774.Google Scholar

  • Schmid, R., Fettes, D., Harte, B., Davis, E., Desmons, J., Meyer-Marsilius, H-J. and Siivola, J. 2004. A systematic nomenclature for metamorphic rocks. 1. How to name a metamorphic rock. Recommendation by the IUGS Subcommission on the systematics of metamorphic rocks (SCMR website www.bgs.ac.uk/SCMR).Google Scholar

  • Schulze, D.J. 1997. The significance of eclogite and Cr-poor megacryst garnets in diamond exploration. Exploration and Mining Geology, 6, 349-366.Google Scholar

  • Seifert, A.V. and Vrana, S. 2005. Bohemian garnet. Bulletin of Geosciences, 80, 113-124.Google Scholar

  • Smulikowski, K. 1967. Eclogites of the Znieznik Mts. in the Sudetes. Geologica Sudetica, 3, 7-180.Google Scholar

  • Štelcl, J., Schmidt, J., Svoboda, L. and Novotny, M. 1972. Notes on the petrography of autochthonous Paleozoic, Mesozoic and Paleogene in the basement of the Carpathian Foredeep and Flysch Belt in southern Moravia. Folia Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunenesis, 13, Geologia 23, 2, 3-106. [In Czech]Google Scholar

  • Štelcl, J., Svoboda, L., Schmidt, J. and Zadrapa, K. 1977. Notes on the petrography of autochthonous Paleozoic and Mesozoic in the platform basement of the Carpathian Foredeep and Flysch Belt (sections „SOUTH“ and „CENTRE“). Folia Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunenesis, 18, Geologia 29, 14, 5-120. [In Czech]Google Scholar

  • Thierry, J. and Barrier, E., Eds., 2000. Map 9. Middle Callovian. In: Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, W., Biju-Duval, B., Brunet, M.F., Cadet, J.P., Crasquin, S. and Sandulescu, M. (Eds), Atlas Peri-Tethys Palaeogeographical Maps. Commission for the Geologic Map of the World; Paris.Google Scholar

  • Vrana, V., Štědra, V. and Fišera, M. 2005. Petrology and geochemistry of the Běstvina granulite body metamorphosed at eclogite facies conditions, Bohemian Massif. Journal of Czech Geological Society, 50, 95-106.Google Scholar

  • Wieser, T. 1985. Some remarks on the sedimentation, composition and provenance of exoticstern Polish Carpathians flysch formations. In: T. Wieser (Ed.), Fundamental researches in the western part of the Polish Carpathians. Guide to excursion 1. XIII CBGA Congress, Cracow, Poland, pp. 57-68.Google Scholar

  • Żelaźniewicz, A., Buła, Z., Fanning, M., Seghedi, A. and Żaba, J. 2009. More evidence on Neoproterozoic terranes in southern Poland and southeastern Romania. Geological Quarterly, 53, 93-124.Google Scholar

About the article

Published Online: 2012-11-13

Published in Print: 2012-06-01


Citation Information: Acta Geologica Polonica, Volume 62, Issue 2, Pages 231–245, ISSN (Print) 0001-5709, DOI: https://doi.org/10.2478/v10263-012-0012-0.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anne Krippner, Guido Meinhold, Andrew C. Morton, and Hilmar von Eynatten
Sedimentary Geology, 2014, Volume 306, Page 36
[2]
Gerald Stern and Michael Wagreich
Swiss Journal of Geosciences, 2013, Volume 106, Number 3, Page 505

Comments (0)

Please log in or register to comment.
Log in