Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Geologica Polonica

The Journal of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.917
5-year IMPACT FACTOR: 1.418

CiteScore 2016: 1.15

SCImago Journal Rank (SJR) 2016: 0.507
Source Normalized Impact per Paper (SNIP) 2016: 0.755

Open Access
Online
ISSN
2300-1887
See all formats and pricing
More options …

Facies and integrated stratigraphy of the Upper Turonian (Upper Cretaceous) Großberg Formation south of Regensburg (Bavaria, southern Germany)

Birgit Niebuhr
  • Bayerisches Landesamt für Umwelt, Abt. 10 Geologischer Dienst, Leopoldstr. 30, D – 95615 Marktredwitz, Germany
  • Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D – 01109 Dresden, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nadine Richardt
  • Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D – 01109 Dresden, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Markus Wilmsen
  • Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D – 01109 Dresden, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-02-08 | DOI: https://doi.org/10.2478/v10263-012-0032-9

ABSTRACT

Niebuhr, B., Richardt, N. and Wilmsen, M. 2012. Facies and integrated stratigraphy of the Upper Turonian (Upper Cretaceous) Grosberg Formation south of Regensburg (Bavaria, southern Germany). Acta Geologica Polonica, 62 (4), 595-615. Warszawa.

The Upper Turonian Grosberg Formation of the Regensburg area (Danubian Cretaceous Group, Bavaria, southern Germany) has a mean thickness of 20-25 m and consists of sandy bioclastic calcarenites and calcareous sandstones which are rich in bryozoans, serpulids and bivalves (oysters, rudists, inoceramids). Eight facies types have been recognized that characterize deposition on a southward dipping homoclinal ramp: the inner ramp sub-environment was characterized by high-energy sandwave deposits (sandy bioclastic rud- and grainstones, bioclastic sandstones) with sheltered inter-shoal areas. In mid-ramp settings, bioturbated, glauconitic, calcareous sand- and siltstones as well as bioturbated, bioclastic wacke- and packstones predominate. The carbonate grain association of the Grosberg Formation describes a temperate bryomol facies with indicators of warm-water influences. An inferred surplus of land-derived nutrients resulted in eutrophic conditions and favoured the heterozoan communities of the Grosberg Ramp. Carbon stable isotope geochemistry cannot significantly contribute to the stratigraphic calibration of the Grosberg Formation due to the depleted and trendless bulk-rock δ13 C values, probably resulting from a shallow-water aquafacies with depleted δ13 C DIC values and low δ13 C values of syndepositional and early diagenetic carbonate phases. However, strongly enriched skeletal calcite δ13 C values support a correlation of the Grosberg Formation with the mid-Late Turonian positive Hitch Wood isotope event (Hyphantoceras Event of northern Germany). This interpretation is supported by biostratigraphic data and a range from the Mytiloides striatoconcentricus Zone into the lower My. scupini Zone is indicated by inoceramid bivalves. Both the base and top of the Grosberg Formation are characterized by unconformities. Sequence boundary SB Tu 4 at the base is a major regional erosion surface (erosional truncation of the underlying Kagerhoh Formation in the Regensburg area, fluvial incision at the base of the Seugast Member of the Roding Formation in the Bodenwohr area towards the north and northeast). It is suggested that this unconformity corresponds to a major sea-level drop recognized in many other Cretaceous basins below the Hitch Wood or Hyphantoceras Event. The transgression and highstand of the Grosberg Formation is concomitant to the deposition of the fluvial Seugast Member and the onlap of the marginal-marine “Veldensteiner Sandstein” onto the Frankische Alb. The unconformity at the top of the Grosberg Formation (late Late Turonian SB Tu 5) is indicated by a ferruginous firm-/ hardground and an underlying zone of strongly depleted δ13 C values. The abrupt superposition by deeper marine marls of the lower Hellkofen Formation (uppermost Turonian-Lower Coniacian) may be connected with inversion tectonics at the southwestern margin of the Bohemian Massif.

Keywords: Danubian Cretaceous Group; Turonian; Grosberg Formation; Integrated stratigraphy; Sedimentary unconformities; Depositional environment

  • Anderson, T.F. and Arthur, M.A. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and palaeoenvironmental problems. In: Arthur, M.A., Anderson, T.F., Kaplan, I.F., Veizer, J. and Land, L.S. (Eds), Stable Isotopes in Sedimentary Geology. SEPM (Societyfor Sedimentary Geology), Short Course, 10, I.1-I.151.Google Scholar

  • Bauberger, W., Cramer, P. and Tillmann, H. 1969. Erlauterungen zur geologischen Karte von Bayern 1:25000, Blatt Nr. 6938 Regensburg, pp. 1-414. Munchen (BGL).Google Scholar

  • Brasier, M.D 1995. Fossil indicators of nutrient levels. 1: Eutrophication and climatic change. In: Bosence, D.W. and Allison, P.A. (Eds), Marine palaeoenvironmental analysis from fossils. Geological Society of London, Special Publication , 83, 113-132.Google Scholar

  • Brunhuber, A. 1917. Die geologischen Verhaltnisse von Regensburg und Umgebung. Naturwissenschaftlicher VereinRegensburg, pp. 1-107. Regensburg.Google Scholar

  • Burchette, T.P. and Wright, V.P. 1992. Carbonate ramp depositional systems. Sedimentary Geology, 79, 3-57.Google Scholar

  • Caron, M. 1985. Cretaceous planktic foraminifera. In: Bolli, H.M., Saunders, J.B. and Perch-Nielsen, K. (Eds), Plankton Stratigraphy, 17-86. Cambridge University Press; Cambridge.Google Scholar

  • Carranante, G., Esteban, M., Milliman, J.D. and Simone, L. 1988. Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sedimentary Geology, 60, 333-346.CrossrefGoogle Scholar

  • Catuneanu, O., Galloway, W.E., Kendall, C.G.St.C., Miall, A.D., Posamentier, H.W., Strasser, A. and Tucker, M.E. 2011. Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44, 173-245.Google Scholar

  • Coe, A.L. 2003. The sedimentary record of sea-level change, pp. 1-288. Cambridge University Press; Cambridge.Google Scholar

  • Dacque, E. 1939. Die Fauna der Regensburg-Kehlheimer Oberkreide (mit Ausschluss der Spongien und Bryozoen). Abhandlungen der Bayerischen Akademie derWissenschaften, Mathematisch-NaturwissenschaftlicheAbteilung, Neue Fassung, 45, pp. 1-218. C.H. Beck; Munchen.Google Scholar

  • Dunham, R.J. 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (Ed.), Classification of carbonate rocks. American Association ofPetroleum Geology, Memoir, 1, 108-121.Google Scholar

  • Embry, A.F. and Clovan, J.E. 1972. Absolute water depth limits of Late Devonian paleoecological zones. GeologischeRundschau, 61, 672-686.Google Scholar

  • Flugel, E. 2004. Microfacies of carbonate rocks, pp. 1-997. Springer Verlag; Berlin, Heidelberg.Google Scholar

  • Gale, A.S. 1996. Turonian correlation and sequence stratigraphy of the Chalk in southern England. In: Hesselbo, S.P. and Parkinson, D.N. (Eds), Sequence stratigraphy in British Geology. Geological Society of London, SpecialPublication, 103, 177-195.Google Scholar

  • Hallam, A. 1992. Phanerozoic sea-level changes, pp. 1-266. Columbia University Press; New York.Google Scholar

  • Hancock, J.M. and Kauffman, E.G. 1979. The great transgressions of the Late Cretaceous. Journal of the GeologicalSociety of London, 136, 175-186.Google Scholar

  • Immenhauser, A., Holmden, C. and Patterson, W.P. 2008. Interpreting the carbon-isotope record of ancient shallow epeiric seas: Lessons from the Recent. In: Pratt, B. and Holmden, C. (Eds), Dynamics of epeiric seas. GeologicalAssociation of Canada, Special Paper, 48, 137-174.Google Scholar

  • James, N.P. 1997. The cool-water carbonate depositional realm. SEPM (Society for Sedimentary Geology), SpecialPublication, 56, 1-20.Google Scholar

  • Jarvis, I., Gale, A.G., Jenkyns, H.C. and Pearce, M.A. 2006. Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian- Campanian (99.6-70.6 Ma). Geological Magazine, 143, 561-608.Google Scholar

  • Kley, J. and Voigt, T. 2008. Late Cretaceous intraplate thrusting in central Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology, 36, 839-842.CrossrefGoogle Scholar

  • Korsitzke, H.-D. 1995. Planktonische Foraminiferen der Oberkreide (Cenoman-Campan) am nordlichen Tethysrand (suddeutscher Molasse-Untergrund, Regensburger Kreide) - Systematik, Stratigraphie sowie Palokologie der Foraminiferengesamtfauna. Documenta naturae, 92, 1-274.Google Scholar

  • Lehner, L. 1935. Uber das Turon auf dem Frankischen Jura. Centralblatt für Mineralogie, Geologie und Paläontologie , B 8, 223-238.Google Scholar

  • Loser, H. 1996. A new octocoral from the Upper Cretaceous of East Bavaria. Neues Jahrbuch für Geologie und Paläontologie , Monatshefte, 1996, 485-489.Google Scholar

  • Meyer, R.K.F. 1996. Kreide. In: Erlauterungen zur Geologischen Karte von Bayern 1:500000, 112-125.Google Scholar

  • Nelson, C.S. 1988. An introductory perspective on non-tropical shelf carbonates. Sedimentary Geology, 60, 3-12.CrossrefGoogle Scholar

  • Niebuhr, B. 2011. Die Bohrung Pfakofen LAM B2/09 sudlich von Regensburg (Turonium / Coniacium-Grenzbereich) - ein Beitrag zur Stratigraphie der Danubischen Kreide- Gruppe (Bayern, Sud-Deutschland). Geologische Blätterfür Nordost-Bayern, 61, 97-116.Google Scholar

  • Niebuhr. B., Purner. T. and Wilmsen, M. 2009. Lithostratigraphie der auseralpinen Kreide Bayerns. Schriftenreiheder Deutschen Gesellschaft für Geowissenschaften, 65, 7-58.Google Scholar

  • Niebuhr, B., Wilmsen, M., Chellouche, P., Richardt, N., and Purner, T. 2011. Stratigraphy and facies of the Turonian (Upper Cretaceous) Roding Formation at the southwestern margin of the Bohemian Massif (southern Germany, Bavaria). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften , 162, 295-316.Google Scholar

  • Oschmann, F. 1958. Erlauterungen zur Geologischen Karte von Bayern 1:25000 Blatt Nr. 7038 Bad Abbach, pp. 1-184. Munchen (BGL).Google Scholar

  • Patterson, W.P. and Walter, L.M. 1994. Depletion of δ13 C in seawater ΣCO 2 on modern carbonate platforms: significance for the carbon isotope record of carbonates. Geology , 22, 885-888.CrossrefGoogle Scholar

  • Philip, J. and Floquet, M. 2000. Late Cenomanian (94.7-93.5). In: Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M.F., Cadet, J.P., Crasquin, S. and Sandulescu, M. (Eds), Atlas Peri-Tethys palaeogeographical maps. CCGM/CGMW, 129-136.Google Scholar

  • Richardt, N. and Wilmsen, M. 2012. Lower Upper Cretaceous standard section of the southern Munsterland (NWGermany): carbon stable-isotopes and sequence stratigraphy. Newsletters on Stratigraphy, 45, 1-24.Google Scholar

  • Richardt, N., Wilmsen, M. & Niebuhr, B. in press. Late Cenomanian- Early Turonian facies development and sea-level changes in the Bodenwohrer Senke (Danubian Cretaceous Group, Bavaria, Germany). Facies, 59, DOI 10.1007/s10347-012-0337-x.CrossrefGoogle Scholar

  • Roper, M. and Neumeier, F. 1995. Neue Fossilfunde aus der Regensburger Oberkreide, Teil 2: Der Grosberger Sandstein von Eggmuhl (Oberturon). Fossilien, 1995, 367-372.Google Scholar

  • Schneider, S., Niebuhr, B., Wilmsen, M. and Vodražka, R. 2011. Between the Alb and the Alps - The fauna of the Upper Cretaceous Sandbach Formation (Passau region, SE Germany). Bulletin of Geosciences, 86, 785-816.Google Scholar

  • Shackelton, N.J. and Kenneth, J.P. 1975. Paleotemperature history of the Cenozoic and initiation of Antarctic glaciation: oxygen and carbon isotope analysis in DSDP sites 277, 279 and 281. Initial Report of the Deep Sea Drilling Project , 29, 743-755.Google Scholar

  • Troger, K-A., Niebuhr, B. and Wilmsen, M. 2009. Inoceramen aus dem Cenomanium bis Coniacium der Danubischen Kreide-Gruppe (Bayern, Sud-Deutschland). Schriftenreiheder Deutschen Gesellschaft für Geowissenschaften, 65, 59-110.Google Scholar

  • Voigt, E. 1962. Fruhdiagenetische Deformation der turonen Planerkalke bei Halle / Westf. als Folge einer Grosgleitung unter besonderer Berucksichtigung des Phacoid-Problems. Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg , 31, 146-275.Google Scholar

  • Voigt, E. 1995. Diaperoecia neumeieri, eine neue multilamellare cyclostome Bryozoenart aus dem Turon von Zaitzkofen (Oberpfalz, Bayern). Mitteilungen der BayerischenStaatssammlung für Paläontologie und historischeGeologie, 35, 9-26.Google Scholar

  • Voigt, S. and Hilbrecht, H., 1997. Late Cretaceous carbon isotope stratigraphy in Europe: Correlation and relations with sea level and sediment stability. Palaeogeography,Palaeoclimatology, Palaeoecology, 134, 39-59.Google Scholar

  • Voigt, S., Gale, A.S. and Flogel, S. 2004. Midlatitude shelf seas in the Cenomanian-Turonian greenhouse world: Temperature evolution and North Atlantic circulation. Paleoceanography , 19, PA4020.Google Scholar

  • Voigt, S., Gale, A.S. and Voigt, T. 2006a. Sea level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis. Cretaceous Research, 27, 836-858.CrossrefGoogle Scholar

  • Voigt, T., Wiese, F., Eynatten, H. von, Franzke, H.-J. and Gaupp, R. 2006b. Facies evolution of syntectonic Upper Cretaceous deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany). Zeitschrift derDeutschen Gesellschaft für Geowissenschaften, 157, 203-243.Google Scholar

  • Weidich, F. 1987. Neue stratigraphische Ergebnisse aus der Suddeutschen Kreide, 2: Die Weillohe-Mergel (Coniac) im Golf von Regensburg. Neues Jahrbuch für Geologieund Paläontologie, Monatshefte, 1987, 440-448 Google Scholar

  • Wiese, F., 1999. Stable isotope data (δ 13 C, δ 18 O) from the Middle and Upper Turonian (Upper Cretaceous) of Liencres (Cantabria, northern Spain) with a comparison to northern Germany (Sohlde & Salzgitter-Salder). Newsletters onStratigraphy, 37, 37-62.Google Scholar

  • Wiese, F. 2010. Stratigraphic re-assessment of the Seewen Formation in the classic Helvetic key locality ‘‘An der Schanz’’ quarry, Burgberg (Bavarian Alps; Turonian, Coniacian): biostratigraphy and δ 13 C correlations. CretaceousResearch, 31, 130-146.Google Scholar

  • Wiese, F. and Kroger, B. 1998. Evidence for a shallowing event in the Upper Turonian (Cretaceous) Mytiloides scupini Zone of northern Germany. Acta Geologica Polonica, 48, 265-284.Google Scholar

  • Wiese, F., Čech, S., Ekrt, B., Koštak, M., Mazuch, M. and Voigt, S. 2004. The Upper Turonian of the Bohemian Cretaceous Basin (Czech Republic) exemplified by the Upohlavy working quarry: integrated stratigraphy and palaeoceanography of a gateway to the Tethys. CretaceousResearch, 25, 329-352.Google Scholar

  • Wilmsen, M. 2003. Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretaceous Research, 24, 525-568.CrossrefGoogle Scholar

  • Wilmsen, M. and Niebuhr, B. 2010. On the age of the Upper Cretaceous transgression between Regensburg and Neuburg an der Donau (Bavaria, southern Germany). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen , 256, 267-278.Google Scholar

  • Wilmsen, M., Wood, C.J., Niebuhr, B. and Kaplan, U. 2009. Cenomanian-Coniacian ammonoids of the Danubian Cretaceous Group (Bavaria, southern Germany). Schriftenreiheder Deutschen Gesellschaft für Geowissenschaften, 65, 111-124.Google Scholar

  • Wilmsen, M., Niebuhr, B., Chellouche, P., Purner, T. and Kling, M. 2010a. Facies pattern and sea-level dynamics of the early Late Cretaceous transgression: a case study from the lower Danubian Cretaceous Group (Bavaria, southern Germany). Facies, 56, 483-507.Google Scholar

  • Wilmsen, M., Niebuhr, B. and Chellouche, P. 2010b. Occurrence and significance of Cenomanian belemnites in the lower Danubian Cretaceous Group (Bavaria, southern Germany). Acta Geologica Polonica, 60 (2), 231-241.Google Scholar

  • Ziegler, P.A. 1990. Geological atlas of Western and Central Europe. 2nd ed., Shell Intern. Petrol., Maatschappij B.V., pp. 1-239. Amsterdam.Google Scholar

  • Žitt, J., Vodražka, R., Hradecka, L., Svobodova, M. and Zagoršek, K. 2006. Late Cretaceous environments and communities as recorded at Chrtniky (Bohemian Cretaceous Basin, Czech Republic). Bulletin of Geosciences, 81, 43-79.CrossrefGoogle Scholar

  • Žitt, J., Vodražka, R., Hradecka, L. and Svobodova, M. 2010. Palaeoenvironments and facies on a progressively flooded rocky island (Upper Cenomanian-Lower Turonian, Bohemian Cretaceous Basin). Journal of the National Museum(Prague), Natural History Series, 179, 223-234. Google Scholar

About the article

Published Online: 2013-02-08

Published in Print: 2012-12-01


Citation Information: Acta Geologica Polonica, Volume 62, Issue 4, Pages 595–615, ISSN (Print) 0001-5709, DOI: https://doi.org/10.2478/v10263-012-0032-9.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in