Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Geologica Polonica

The Journal of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.917
5-year IMPACT FACTOR: 1.418

CiteScore 2016: 1.15

SCImago Journal Rank (SJR) 2016: 0.507
Source Normalized Impact per Paper (SNIP) 2016: 0.755

Open Access
See all formats and pricing
More options …

Calcareous plankton bio-chronostratigraphy of the Maltese Lower Globigerina Limestone member

Niccolo’ Baldassini
  • Corresponding author
  • Dipartimento di Scienze della Terra, Università di Siena, Via Laterina 8, 53100 Siena, Italy. 00393393514706
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roberto Mazzei / Luca Maria Foresi / Federica Riforgiato / Gianfranco Salvatorini
Published Online: 2013-03-27 | DOI: https://doi.org/10.2478/agp-2013-0004


Baldassini, N., Mazzei, R., Foresi L.M., Riforgiato, F. and Salvatorini, G. 2012. Calcareous plankton bio-chronostratigraphy of the Maltese Lower Globigerina Limestone member. Acta Geologica Polonica, 63 (1), 105-135. Warszawa. The planktonic foraminifera and calcareous nannofossil biostratigraphy of the Maltese Lower Globigerina Limestone member has been investigated. The member was dated to early planktonic foraminiferal P22 Zone and nannofossil NP25 Zone (upper Chattian). A climate-stratigraphic approach, based on the quantitative analyses of calcareous nannofossils, was used additionally to achieve a more precise chronology. The species Coccolithus pelagicus (diameter £11 μm) and the genus Umbilicosphaera were selected for the recognition of cold and warm surface waters intervals respectively. The ratio of their percentages enabled the construction of a Climatic Factor (CLF) curve. The CLF values were consistent with a warm climatic phase, which is probably represented by the portion of the oxygen stable isotope curve of Miller et al. above the Oi2c event and below the beginning of the cooling trend that culminates in the Mi1 event. Considering these two climatic events and the upper boundary of the NP25 Zone, it can be inferred that the deposition of the Lower Globigerina Limestone member took place between 25.1 and 24.3 Ma.

Keywords : Calcareous plankton; Biostratigraphy; Chattian; Lower Globigerina Limestone member; Maltese Archipelago

  • Andruleit, H. 1997. Coccolithophore fluxes in the Norwegian- Greenland Sea: seasonality and assemblage alterations. Marine Micropaleontology, 31, 45-64.CrossrefGoogle Scholar

  • Aubry, M.P. and Villa, G. 1996. Calcareous nannofossil stratig­raphy of the Lemme-Carrosio Paleogene/Neogene Global Stratotype Section and Point. Giornale di Geologia, 58. 51-69.Google Scholar

  • Bartolini, C. and Gehin, C.E. 1970. Evidence ofsedimentation by gravity-assisted bottom currents in the Mediterranean Sea. Marine Geology, 9, M1-M5.CrossrefGoogle Scholar

  • Baumann, K.H. 1995. Morphometry of Quaternary Coccol- ithus pelagicus coccoliths from Northern North Atlantic and its paleoceanographical significance. In: Flores, J.A. and Sierro, F.J. (Eds), Fifth INA Conference Proceedings University of Salamanca, pp. 11-21. Salamanca.Google Scholar

  • Bennett, S.M. 1979. A transgressive carbonate sequence span­ning the Paleogene Neogene boundary on the Maltese Is­lands. Annales Geologiques des Pays Helleniques, 1, 71­ 80.Google Scholar

  • Bennett, S.M. 1980. Palaeoenvironmental studies in Maltese mid-Tertiary carbonates. Unpublished Ph.D. Dissertation. University of London.Google Scholar

  • Berggren, W.A., Kent, D.V., Swisher III, C.C. and Aubry. M.-P. 1995. A Revised Cenozoic geochronology and chronostratigraphy. In: Berggren W.A., Kent D.V., Aubry M.-P. and Hardendol J. (Ed.), Geochronology, time scales and global stratigraphic correlation. SEPM Special Pub­lication, 54, 129-212.Google Scholar

  • Billups, K., Palike, H., Channell, J.E.T., Zachos, J.C. and Shackleton, N.J. 2004. Astronomical calibration of the Late Oligocene through Early Miocene geomagnetic po­larity time scale. Earth Planetary Science Letters, 224, 33­44.Google Scholar

  • Biolzi, M. 1985. The Oligocene/Miocene boundary in se­lected Atlantic, Mediterranean and Paratethyan sections based on biostratigraphic and stable isotope evidence. Memorie di Scienze Geologiche, 37, 303-378.Google Scholar

  • Biolzi, M., Bizon, G., Radovisc, A., Rogl, F. and Zachariasse. W.J. 1981. In search of the Paleogene/Neogene boundary stratotype. Part. 1. Potential boundary stratotype sections in Italy and Greece and a comparison with results from the deep-sea. Planktonic foraminifera. Giornale di Geologia, 44, 98-104.Google Scholar

  • Bizon, G., Bizon, J.J., Aubert, J. and Oertli, H.-J. 1972. Atlas des principaux foraminiferes planctoniques du bassin mediterraneen Oligocene a Quaternaire, pp. 1-136. Edi­tion Technip; Paris.Google Scholar

  • Bizon, G. and Muller, C. 1979. Remarks on the Oligocene\ Miocene boundary based on the results obtained from the Pacific and Indian Oceans. Annales Geologiques des Pays Helleniques, 1, 101-111.Google Scholar

  • Black, M. 1965. Coccoliths. Endeavour, 24, 131-137.Google Scholar

  • Blow, W.H. 1969. Late Middle Eocene to Recent Planktonic foraminiferal biostratigraphy. In: Bronnimann, P. and Renz, H.H. (Eds), Proceedings of the First International. Conference, on Planktonic Microfossils, Geneva., pp. 199-421. E. Brill; Leiden.Google Scholar

  • Boersma, A. 1984. Cretaceous - Tertiary planktonic foraminifers from the southeastern Atlantic Walvis Ridge Area, Deep Sea Drilling Project Leg 74. In: Moore, T.C. Jr., Rabinowitz, P.D. et al. (Eds), Initial Reports of the Deep Sea Drilling Project, 74, 501-524.Google Scholar

  • Boersma, A. and Premoli Silva, I. 1991. Distribution of Pale­ogene planktonic foraminifera - Analogies with the Re­cent? Palaeogeography, Palaeoclimatology, Palaeoecol- ogy, 83, 29-48.Google Scholar

  • Bonnet, S., De Vernal, A., Hillaire-Marcel, C., Radi, T. and Husum, K. 2010. Variability of sea-surface temperature and sea-ice cover in the Fram Strait over the last two mil­lennia. Marine Micropaleontology, 74, 59-74.CrossrefGoogle Scholar

  • Braarud, T. 1979. The temperature range of the non-motile stage of Coccolithus pelagicus in the North Atlantic re­gion. European Journal of Phycology, 14, 349-352.Google Scholar

  • Brand, L.E. 1994. Physiological ecology of marine coccol- ithophores. In: Winter, A. and Siesser, A. (Eds), Coccol- ithophores, pp. 39-49. Cambridge University Press.Google Scholar

  • Bukry, D. 1973. Low Latitude Coccolith Biostratigraphic Zonation. In: Edgar, N.T., Saunders, J.B. et al. (Eds). Initial Reports of the Deep Sea Drilling Project, 15, 685-703.Google Scholar

  • Bukry, D. 1975. New Miocene to Holocene stages in the ocean basins based on calcareous nannoplankton zones. In: Saito, T. and Burckle, L.H. (Eds), Late Neogene Epoch boundaries. Micropaleontology Press, Special Publica­tion, 162-166.Google Scholar

  • Bukry, D. 1978. Biostratigraphy of Cenozoic marine sedi­ments by calcareous nannofossils. Marine Micropaleon­tology, 24, 44-60.Google Scholar

  • Carbone, S., Grasso, M., Lentini, F. and Pedley, H.M. 1987. The distribution and palaeoenvironmental of early Miocene phosphorites of southeast Sicily and their rela­tionship with the Maltese phosphorites. Palaeogeography. Palaeoclimatology, Palaeoecology, 58, 35-53.CrossrefGoogle Scholar

  • Catalano, S. and Di Stefano, A. 1996. Nuovi dati geologici e stratigrafici sul Flysh di Capo d’Orlando nei Peloritani Orientali (Sicilia Nord-Orientale). Memorie della Societa Geologica Italiana, 51, 149-164.Google Scholar

  • Challis, G.R. 1979. Miocene echinoid biofacies of the Maltese Islands. Annales Geologiques des Pays Helleniques, Tome Hors Serie, 1, 253-261.Google Scholar

  • Cooke, J.H. 1896a. Notes on the Globigerina Limestone ofthe Maltese Islands. Geological Magazine, 4 (3), 502-511.CrossrefGoogle Scholar

  • Cooke, J.H. 1896b. Contribution to the stratigraphy and palaeontology of the Globigerina Limestone of the Mal­tese Islands. Quarterly Journal of the Geological Society of London, 52, 461-462.Google Scholar

  • Dart, C.J., Bosence, D.W.J. and McClay, K.R. 1993. Stratig­raphy and structure of the Maltese graben system. Jour­nal of the Geological Society, London, 150, 1153-1166.Google Scholar

  • Felix, R. 1973. Oligo-Miocene stratigraphy of Malta and Gozo. Mededelingen Landbouwhogeschool Wageningen. 73, 1-104.Google Scholar

  • Findlay, C.S. and Flores, J.A. 2000. Subtropical Front fluctu­ations south of Australia (45 09’S, 146 17’E) for the last 130 ka years based on calcareous nannoplankton. Marine Micropaleontology, 40, 403-416.Google Scholar

  • Flores, J.A., Gersonde, R. and Sierro, J.F. 1999. Pleistocene fluctuations in the Agulhas Current retroflection based on the calcareous plankton record. Marine Micropaleon­tology, 37, 1-22.Google Scholar

  • Flores, J.A., Sierro, F.J., Frances, G., Vazquez, A. and Za- marreno, I. 1997. The last 100.000 years in the western Mediterranean surface water and frontal dynamics as re­vealed by coccolithophores. Marine Micropaleontology. 29, 351-366.CrossrefGoogle Scholar

  • Föllmi, K.B., Gertsch, B., Renevey, J.-P., De Kaenel, E. and Stilles, P. 2008. Stratigraphy and sedimentology of phos­phate-rich sediments in Malta and south-eastern Sicily (latest Oligocene to early Late Miocene). Sedimentology. 55, 1029-1051.Google Scholar

  • Foresi, L.M., Donia, F., Mazzei, R. and Salvatorini, G. 2007. Revised age of the Maltese Lower Globigerina Lime­stone member (Globigerina Limestone formation): pre­liminary results. Rivista Italiana di Paleontologia e Strati- grafia, 46, 175-181.Google Scholar

  • Foresi, L.M., Iaccarino, S.M., Mazzei, R., Salvatorini, G. and Bambini, A.M. 2001. Il plancton calcareo (Foraminferi e nannofossili) del Miocene delle Isole Tremiti. Palaeon- tographia Italica, 88, 1-64.Google Scholar

  • Foresi, L.M., Mazzei, R. and Salvatorini, G. 2002. Schema di biostratigrafia integrata a plancton calcareo per il Neo- gene-Quaternario. In: Bossio, A. et al., Note illustrative della carta geologica della zona di S. Maria di Leuca. Atti della Societa Toscana di Scienze Naturali, Memorie, Se­rie A, 107, 145-158.Google Scholar

  • Fornaciari, E., Raffi, I., Rio, D., Villa, G., Backman, J. and Olafsson, G. 1990. Quantitative distribution patterns of Oligocene and Miocene calcareous nannofossils from western equatorial Indian Ocean. In: Duncan, R.A., Back­man, J., Peterson, L.C. et al. (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, 115, 237-254.Google Scholar

  • Fornaciari, E. and Rio, D. 1996. Latest Oligocene to early mid­dle Miocene quantitative calcareous nannofossil bios­tratigraphy in the Mediterranean region. Micropaleonto­logy, 42 (1), 1-36.Google Scholar

  • Geisen, M., Billard, C., Broerse, A.T.C., Cros, L., Probert, I. and Young, J.R. 2002. Life-cycle associations involvingGoogle Scholar

  • pairs of holococcolith species: intraspecific variation or cryptic speciation? European Journal of Phycology, 37 (4), 531-550.Google Scholar

  • Geisen, M., Young, J.R., Probert, I., Saez, A.G., Baumann K.-H., Sprengel, C., Bollmann, J., Cros, L., De Vargas, C. and Medlin, L.K. 2004. Species level variation in coccol- ithophores. In: Thierstein, H.R. and Young, J. (Eds), Coc­colithophores - From Molecular Processes to Global Im­pact, 327-366.Google Scholar

  • Geitzenaver, K.R., Poche, M.B. and McIntyre, A. 1976. Mod­ern Pacific coccolith assemblages: derivation and appli­cation to late Pleistocene paleotemperature analysis. In: Cline, R.M. and Hays, J.D. (Eds), Investigation of late Quaternary paleoceanography and paleoclimatology. Geo­logical Society of America, 423-448.Google Scholar

  • Giannelli, L. and Salvatorini, G. 1972. I Foraminiferi planc- tonici dei sedimenti terziari dell’Arcipelago maltese. I. Biostratigrafia del “Globigerina Limestone”. Atti della Societa Toscana di Scienze Naturali, Memorie, Serie A, 79, 49-74.Google Scholar

  • Giannelli, L. and Salvatorini, G. 1975. I Foraminiferi planc- tonici dei sedimenti terziari dell’Arcipelago maltese. II. Biostratigrafia di: “Blue Clay”, “Greensand” e “Upper Coralline Limestone”. Atti della Societa Toscana di Scienze Naturali, Memorie, Serie A, 82, 1-24.Google Scholar

  • Gradstein, F.M., Ogg, J.G. and Smith, A.G.. 2004a. A Geo­logical Time Scale 2004, pp. 1-589. Cambridge Univer­sity Press; U.K.Google Scholar

  • Gradstein, F.M., Ogg, J.G., Smith, A.G., Bleeker, W. and Lourens, L.J. 2004b. A new Geological Time Scale with special reference to Precambrian and Neogene. Episodes. 2, 83-100.Google Scholar

  • Gregory, J.W. 1890-91. The maltese fossil Echinoidea and their evidence on the correlation of the Maltese rocks. Transactions of the Royal Society of Edinburgh, 36, 225­231.Google Scholar

  • Hagino, K. and Okada, H. 2006. Intra- and infra-specific morphological variation in selected coccolithophore species in the equatorial and subequatorial Pacific Ocean. Marine Micropaleontology, 58, 184-206.CrossrefGoogle Scholar

  • Haq, B.U. 1980. Biogeographic History of Miocene calcare­ous nannoplankton and paleoceanography of the Atlantic Ocean. Micropaleontology, 26, 414-443.CrossrefGoogle Scholar

  • Haq, B.U. and Lohmann, G.P. 1976. Early Cenozoic calcare­ous nannoplankton biogeography of the Atlantic Ocean. Marine Micropaleontology, 1, 119-194.CrossrefGoogle Scholar

  • Hasle, G.R. 1960. A quantitative study of phytoplankton from equatorial Pacific. Deep Sea Research, 6, 38-59.Google Scholar

  • Honjo, S. 1990. Particle fluxes and modern sedimentation in the polar oceans. In: Smith Jr., W.O. (Ed.), Polar oceanog­raphy. Part B: Chemistry, biology, and geology, 687-739.Google Scholar

  • House, M.R., Dunham, K.C. and Wigglesworth, J.C. 1961. Geology and structure of the Maltese Islands. In: Bowen, J.H., Dewdney, J.C. and Fisher, W.B. (Eds), Malta, a background for development. Durham University Press, 25-47.Google Scholar

  • Hyde, T.G. 1955. Geology ofthe maltese islands. Proceedings of the Royal Society of Edinburgh. B65, 299.Google Scholar

  • Iaccarino, S.M, Borsetti, A.M. and Rogl, F. 1996. Planktonic foraminifera of the Neogene Lemme - Carrosio GSSP Section (Piedmont, Northern Italy). In: Steininger, F.F.. Iaccarino, S. and Cati, F. (Eds), In search of the Paleo­gene/Neogene boundary. Part 3: The Global Stratotype Section and Point. The GSSP for the base ofthe Neogene. Giornale di Geologia, 58, 35-49.Google Scholar

  • Iaccarino, S.M., Premoli Silva, I., Biolzi, M., Foresi, L.M.. Lirer, F. and Petrizzo, M.R. 2005. Pratical manual of Oligocene to Middle Miocene Planktonic Foraminifera. In: Biolzi, M., Iaccarino, S.M. and Rettori, R. (Eds), In­ternational School on Planktonic Foraminifera, 4° Course. Perugia, 1-141.Google Scholar

  • Jacobs, E., Weissert, H., Shield, G. and Stille, P. 1996. The Monterey event in the Mediterranean: A record from shelf sediments of Malta. Paleoceanography, 11, 717-728.CrossrefGoogle Scholar

  • Kienel, U., Rehfeld, U. and Bellas, S.M. 1995. The Miocene Blue Clay formation of the Maltese Islands: Sequence- stratigraphic and paleoceanographic implications based on calcareous nannofossil stratigraphy. Berliner Geowis- senschaftliche Abhandlungen, 16, 533-557.Google Scholar

  • Kleijne, A., Kroon, D. and Zevenboom, W. 1989. Phyto­plankton and foraminiferal frequencies in northern In­dian Ocean and Red Sea surface waters. Netherlands Journal of Sea Research, 24 (4), 531-539.CrossrefGoogle Scholar

  • Lourens, L., Hilgen, F., Shackleton, N.J., Laskar, J. and Wil­son, D. 2004. The Neogene Period. In: Gradstein, F., Ogg. J. and Smith, A. (Eds), A Geological Timescale 2004. Cambridge University Press, 409-440.Google Scholar

  • Marino, M., Maiorano, P. and Lirer, F. 2008. Changes in cal­careous nannofossil assemblages during the Mid-Pleis­tocene Revolution. Marine Micropaleontology, 69, 70-90.CrossrefGoogle Scholar

  • Martini, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci, A. (Ed.), Pro­ceedings of the second International Conference (Roma 1970) of Planktonic Microfossils 2, pp. 739-785. Roma.Google Scholar

  • Martini, E. and Muller, C. 1986. Current Tertiary and Qua­ternary calcareous nannoplankton stratigraphy and corre­lations. Newsletters on Stratigraphy, 16, 99-112.Google Scholar

  • Mazzei, R. 1980. Studio biostratigrafico di alcune sezioni mioceniche dell’Arcipelago Maltese sulla base del Nanno- plancton calcareo. Paleontologia Stratigrafica e Evoluzione, 1, 149-152.Google Scholar

  • Mazzei, R. 1986. The Miocene sequence of the Maltese Is­lands: biostratigraphic and chronostratigraphic references based on nannofossils. Atti della Societa Toscana di Scienze Naturali, Memorie, 92, 165-197.Google Scholar

  • McIntyre, A. and Be, A.W.H. 1967. Modern coccolithophoridae of the Atlantic Ocean-I. Placoliths and cyrtoliths. Deep Sea Research and Oceanographic Abstracts, 14. 561-564.Google Scholar

  • McIntyre, A., Be, A.W.H. and Roche, M.B. 1970. Modern Pa­cific Coccolithophorida: a paleontological thermometer. New York Academy of Sciences Series II, 32, 720-731.Google Scholar

  • Menesini, E. 1979a. Echinidi fossili dell’Arcipelago Maltese. I.Atti della Societa Toscana di Scienze Naturali, Memo­rie, Serie A, 86, 51-64.Google Scholar

  • Menesini, E. 1979b. Maltese Fossil Echinoids. Annales Géologiques des Pays Helléniques, 2, 799-806.Google Scholar

  • Miller, K.G., Aubry, M.-P., Khan, M.J., Melillo, A.J., Kent, D.V. and Berggren, W.A. 1985. Oligocene-Miocene bios­tratigraphy, magnetostratigraphy and isotopic stratigraphy of the western North Atlantic. Geology, 13, 257-261.CrossrefGoogle Scholar

  • Miller, K.G., Feigenson, M.D., Wright, J.D. and Clement. B.M. 1991a. Miocene isotope reference section Deep Sea Drilling Project Site 608: an evaluation of isotope and biostratigraphic resolution. Paleoceanography, 6, 33-52.Google Scholar

  • Miller, K.G. and Kent, D.V. 1987. Testing Cenozoic eustatic changes: the critical role of stratigraphic resolution. Cush­man Foundation for Foraminiferal Research Special Pub­lication, 24, 51-56.Google Scholar

  • Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D.. Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S.. Christie-Blick, N. and Pekar, S.F. 2005. The Phanerozoic Record of Global Sea-Level Change. Science, 310, 1293­1298.PubMedCrossrefGoogle Scholar

  • Miller, K.G., Wright, J.D. and Fairbanks, R.G. 1991. Un­locking the Ice House: Oligocene-Miocene Oxygen Iso­topes, Eustasy, and Margin Erosion. Journal of Geophys­ical Research, 96, 6829- 6848.Google Scholar

  • Miller, K.G., Wright, J.D. and Brower, A.N. 1989. Oligocene to Miocene stable isotope stratigraphy and planktonic foraminifer biostratigraphy of the Sierra Leone Rise (DSDP Site 366 and ODP Site 667). In: Ruddiman, W„ Sarnthein, M. et al. (Eds), Proceedings ofthe Ocean Drilling Program, Scientific Results, 108, 279-296.Google Scholar

  • Muller, C. 1976. Tertiary and Quaternary calcareous nanno- plankton from the Norwegian-Greenland Sea, DSDP Leg 38. In: Talwani, M., Volitsev, G. et al. (Eds), Initial Reports ofthe Deep Sea Drilling Project, 38, 823-841.Google Scholar

  • Murray, J. 1890. The Maltese Islands with special reference to their geological structure. Scottish Geographical Maga­zine, 6, 449-488.Google Scholar

  • Okada, H. and Bukry, D. 1980. Supplementary modification and introduction of code numbers to the low latitude coccolith biostratigraphy zonation (Bukry 1973, 1975). Marine Micropaleontology, 51, 321-325.CrossrefGoogle Scholar

  • Okada, H. and Honjo, S. 1973. The distribution of oceanic coc- colithophorids in the Pacific. Deep Sea Research and Oceanographic Abstracts, 20, 355-364.Google Scholar

  • Okada, H. and McIntyrei, A. 1979. Seasonal distribution of modem coccolithophores in the western North Atlantic Ocean. Marine Biology, 54, 319-328.CrossrefGoogle Scholar

  • Pearson, P.N. and Chaisson, W.P. 1997. Late Paleocene to Middle Miocene planktonic foraminifer biostratigraphy of the Ceara Rise. In: Shackleton, N.J., Curry, W.B., Richter. C. and Bralower, T.J. (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, 154, 33-68.Google Scholar

  • Pedley, H.M. 1975. Oligocene-Miocene stratigraphy ofthe Maltese islands. Unpublished Ph.D. Dissertation, Uni­versity of Hull; Hull.Google Scholar

  • Pedley, H.M. 1976. A paleoecological study of the Upper coralline Limestone Terebratula-Aphelesia Bed (Miocene, Malta) based on bryozoan growth-forms and brachiopod distribution. Palaeogeography, Palaeoclimatology, Palaeoecology, 20, 209-234.CrossrefGoogle Scholar

  • Pedley, H.M. 1978a. A new lithostratigraphical and paleoen- vironmental interpretation for the coralline limestone for­mations (Miocene) of the Maltese Islands. Institute of Geological Sciences, Overseas Geology and Mineral Resources, 54, 273-291.Google Scholar

  • Pedley, H.M. 1978b. A new record of fish bearing strata from the Maltese Islands and its palaeoenvironmental signifi­cance. Palaeogeography, Palaeoclimatology, Palaeoe­cology, 24, 73-83.CrossrefGoogle Scholar

  • Pedley, H.M. 1989. Controls of Cenozoic sedimentation in the Maltese Islands: review and interpretation. Memorie della Societa Geologica Italiana, 38, 81-94.Google Scholar

  • Pedley, H.M. 1993. Geological Maps of the Maltese Islands. Scale: 1:25.000, 2 sheets. In: Oil Exploration Directorate. Office of the Prime Minister, Valletta, Malta, Geological map of the Maltese Islands (sheet 1, Malta; sheet 2 Gozo and Comino), British Geological Survey, Keyworth.Google Scholar

  • Pedley, H.M. and Bennett, S.M. 1985. Phosphorites, hard- grounds and syndepositional subsidence: A paleoenvi- ronmental model from Miocene of the Maltese Islands. Sedimentary Geology, 45, 1-34.CrossrefGoogle Scholar

  • Pedley, H.M., Cugno, G. and Grasso, M. 1992. Gravity slide and resedimentation processes in a Miocene carbonate ramp, Hyblean Plateau, southeastern Sicily. Sedimentary Geology, 79, 189-202.CrossrefGoogle Scholar

  • Pedley, H.M., House, M.R. and Waugh, B. 1976. The geology of Malta and Gozo. Proceedings ofthe Geologists’Asso- ciation, 87, 325-341.Google Scholar

  • Pekar, S.F., Christie-Blick, N., Kominz, M.A. and Miller. K.G. 2002. Calibration between eustatic estimates from backstripping and oxygen isotopic records for the Oligocene. Geology, 30, 903-906.CrossrefGoogle Scholar

  • Pekar, S.F., De Conto, R.M. and Harwood, D.M. 2006. Re­solving a late Oligocene conundrum: Deep-Sea warming and Antarctic glaciation. Palaeogeography, Palaeocli- matology, Palaeoecology, 231, 29-40.Google Scholar

  • Pekar, S.F. and Miller, K.G. 1996. New Jersey Oligocene “Icehouse” sequences (ODP leg 150X) correlated with the global 5180 and Exxon eustatic records. Geology, 24. 567-570.Google Scholar

  • Perch-Nielsen, K. 1985. Cenozoic calcareous nannofossils. In: Bolli, H.M., Saunders, J.B. and Perch-Nielsen, K. (Eds). Plankton Stratigraphy. Cambridge University Press, 427­554.Google Scholar

  • Pratt, S.K. 1990. Hardgrounds genesis in pelagic carbonates from the Miocene of Malta and Cretaceous of southern England. Unpublished Ph.D. Dissertation, University of London, London.Google Scholar

  • Raffi, I., Backman, J., Fornaciari, E., Palike, H., Rio, D.. Lourens, L. and Hilgen, F. 2006. A review of calcareous nannofossils astrobiochronology encompassing the past 25 million years. Quaternary Science Reviews, 25, 3113­3137.CrossrefGoogle Scholar

  • Rehfeld, U. and Janssen, A.W. 1995. Development of phos- phatized hardgrounds in the Miocene Globigerina Lime­stones of the Maltese archipelago, including a description of Gamopleura melitensis sp. nov. (Gasteropoda, Euthe- cosomata). Facies, 33, 91-106.CrossrefGoogle Scholar

  • Rizzo, C. 1932. Geology ofthe Maltese Islands. Government Printing Office, Malta.Google Scholar

  • Roman, F. and Roger, J. 1939. Observations sur la faune des pectinides de Malta. Bulletin de la Societe Geologique de France, 9, 59-79.Google Scholar

  • Rose, E.P.F. 1974. Stratigraphical and facies distribution of ir­regular echinoids in Miocene limestone of Gozo, Malta and Cyrenaica, Libia. 5th Congres du Neogene Mediter- raneen, Memoire du Bureau de Recherches Geologiques et Minieres Tome 1, pp. 349-355. LyonGoogle Scholar

  • Rose, E.P.F., Pratt, S.K. and Bennett, S.M. 1992. Evidence for Sea-Level Changes in the Globigerina Limestone forma­tion (Miocene) of the Maltese Islands. Paleontologia i Evolucio, 24-25, 265-276.Google Scholar

  • Roth, P.H. and Coulbourn, W.T. 1982. Floral and solution pat­terns of coccoliths in surface sediments of the North Pa­cific. Marine Micropaleontology, 7, 1-52.CrossrefGoogle Scholar

  • Roth, P.H. and Berger, W.H. 1974. Distribution and dissolu­tion of coccoliths in the south and central Pacific. In: Sliter, W.V., Be, A.W.H. and Berger, W.H. (Eds), Car­bonate dissolution. Cushman Foundation for Forami- niferal Research Special Publication, 13, 87-113.Google Scholar

  • Saez, A.G., Probert, I., Geisen, M., Quinn, P., Young, J.R. and Medlin, L.K. 2003. Pseudo-cryptic speciation in coccol­ithophores. Proceedings ofthe National Academy of Sci­ences of United States of America, 100, 7163-7168.Google Scholar

  • Sambleten, C. and Schroeder, A. 1992. Living coccolithophore communities in the Norwegian-Greenland Sea and their record in sediments. Marine Micropaleontology, 19, 333­354.Google Scholar

  • Sato, T., Yoguchi, S., Takayama, T. and Kameo, K. 2004. Drastic change in the geographical distribution of the cold-water nannofossil Coccolithus pelagicus (Wallich) Schiller at 2.74 Ma in the late Pliocene, with special ref­erence to glaciation in the Arctic Ocean. Marine Mi­cropaleontology, 52, 181-193.Google Scholar

  • Shackleton, N.J., Crowhurst, S.J., Weedon, G.P. and Laskar. J. 1999. Astronomical calibration ofOligocene - Miocene time. Philosophical Transactions of the Royal Society of London, Series Mathematical, Physical and Engineering Sciences A, 357, 1907-1929.Google Scholar

  • Spezzaferri S, Premoli Silva I (1991) Oligocene planktonic foraminiferal biostratigraphy and paleoclimatic interpre­tation from Hole 538A, DSDP Leg 77, Gulf of Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 83, 217-263Google Scholar

  • Spezzaferri, S. 1994. Planktonic foraminiferal biostratigraphy and taxonomy of the Oligocene and Lower Miocene in the oceanic record. An overview. Palaeontographia Italica, 81, 1-187.Google Scholar

  • Stainforth, R.M., Lamb, J.L., Luterbacher, H., Beard, J.H. and Jeffords, R.M. 1975. Cenozoic planktonic foraminferal zonation and characteristics of index forms. University of Kansas Paleontological Contributions, 62, 1-162.Google Scholar

  • Steininger F.F., Aubry M.P., Berggren, W.A., Biolzi, M.. Borsetti, A.M., Cartlidg, E.J.E., Cati, F., Corfield, R.. Gelati, R., Iaccarino, S., Napoleone, C., Ottner, F., Rögl, F.. Roetzel, R., Spezzaferri, S., Tateo, F., Villa, G. and Zeven­boom, D., 1997. The Global Stratotype Section and Point (GSSP) for the base of the Neogene. Episodes, 20, 23-28.Google Scholar

  • Steininger, F.F., Iaccarino, S. and Cati, F. (Eds) 1996. In search of the Paleogene/Neogene boundary. Part 3 - The Global Stratotype Section and Point. The GSSP for the base of the Neogene. Giornale di Geologia, 58, 1-192.Google Scholar

  • Sugarman, P.J., McCartan, L., Miller, K.G., Feigenson, M.D.. Pekar, S., Kistler, R.W. and Robinson, A.G. 1997. Stron- tium-isotopic correlation of Oligocene to Miocene se­quences, New Jersey and Florida. In: Miller K.G. and Sny­der S.W. (Eds), Proceedings of the Ocean Drilling Program Scientific Results, 150, 147-159.Google Scholar

  • Theodoridis, S. 1984. Calcareous nannofossil biozonation of the Miocene and revision of the helicoliths and discoast- ers. Utrecht Micropaleontological Bulletins, 32, 1-271.Google Scholar

  • Wells, P. and Okada, H. 1996. Holocene and Pleistocene glacial palaeoceanography off southeastern Australia. based on foraminifers and nannofossils in Vema cored hole V18-222. Australian Journal of Earth Science, 43. 509-523.Google Scholar

  • Winter, A., Jordan, R.W. and Roth, P.H. 1994. Biogeography of living coccolithophores in ocean waters. In: Winter A. and Siesser W.G. (Ed.), Coccolithophores. Cambridge University Press, pp. 161-177.Google Scholar

  • Wright, T. 1855. On a new genus of fossil Cidaridae with a synopsis ofthe species included therein. Annals and Mag­azine of natural History, 16, 94-100. and Proceedings of the CotteswoldNaturalists’ Field Club, 2, 121.Google Scholar

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K. 2001. Trends, Rhythms and Aberrations in Global Climate 65 Ma to Present. Science, 292, 686-693.PubMedCrossrefGoogle Scholar

  • Zhang, J., Miller, K.G. and Berggren, W.A. 1993. Neogene planktonic foraminiferal biostratigraphy of the northeast­ern Gulf of Mexico. Micropaleontology, 39, 299-326.CrossrefGoogle Scholar

  • Zhang, J. and Siesser, W.G. 1986. Calcareous nannoplankton in continental-shelf sediments, East China Sea. Micropa­leontology, 32, 271-281.Google Scholar

About the article

Published Online: 2013-03-27

Published in Print: 2013-03-01

Citation Information: Acta Geologica Polonica, Volume 63, Issue 1, Pages 105–135, ISSN (Print) 0001-5709, DOI: https://doi.org/10.2478/agp-2013-0004.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Niccolò Baldassini and Agata Di Stefano
Natural Hazards, 2017, Volume 86, Number S2, Page 203
Sara Biolchi, Stefano Furlani, Stefano Devoto, Ritienne Gauci, Doriano Castaldini, and Mauro Soldati
Journal of Maps, 2016, Volume 12, Number 1, Page 87

Comments (0)

Please log in or register to comment.
Log in