Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Geologica Polonica

The Journal of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.917
5-year IMPACT FACTOR: 1.418

CiteScore 2016: 1.15

SCImago Journal Rank (SJR) 2016: 0.507
Source Normalized Impact per Paper (SNIP) 2016: 0.755

Open Access
Online
ISSN
2300-1887
See all formats and pricing
More options …

Trace fossils from the Lower Muschelkalk of Raciborowice Górne (North Sudetic Synclinorium, SW Poland) and their palaeoenvironmental interpretation

Alina Chrząstek
  • Corresponding author
  • Institute of Geological Sciences, Wrocław University, Maksa Borna 9, PL-50-204 Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-15 | DOI: https://doi.org/10.2478/agp-2013-0015

Abstract

The following trace fossils have been recognised in the Lower Muschelkalk of Raciborowice Gorne (North Sudetic Synclinorium, SW Poland): Archaeonassa fossulata, Balanoglossites triadicus, ?Gastrochaenolites isp., Lockeia isp., Palaeophycus tubularis, Palaeophycus isp., ?Planolites beverleyensis, P. montanus, Planolites isp., ?Protovirgularia isp., Rhizocorallium commune var. auriforme, R. commune var. irregulare, R. jenense, Skolithos linearis, Thalassinoides suevicus and Trypanites weisei. Coprolites and an unidentified trace fossil A are also described. The trace fossils allow the discrimination of five ichnoassociations in the Raciborowice Gorne section: (IA 1) Rhizocorallium- Pholeus, (IA 2) Rhizocorallium-Palaeophycus, (IA 3) Thalassinoides, (IA 4) Trypanites-Balanoglossites and (IA 5) Planolites-Palaeophycus. The Lower Muschelkalk succession was deposited on a shallow carbonate ramp affected by frequent storms. Deposition commenced with sedimentation in a restricted lagoon on the inner ramp with a short episode of sabkha formation. It continued on the middle and outer ramp and then on a skeletal shoal of the outer ramp and in an open basin. Ichnoassociation IA 5 is related to a maximum transgression that commenced with the deposition of the Spiriferina Bed and which probably marked the opening of the Silesian-Moravian Gate. The basin underwent two shallowing episodes, as evidenced by ichnoassociations IA 3-IA 4, resulting in the formation of hardgrounds. Bathymetric changes in the Raciborowice Gorne section correspond well with a general transgressive trend in the Germanic Basin.

Keywords : Sudetes; North Sudetic Synclinorium; Lower Muschelkalk; Trace fossils; Ichnoassociations; Carbonate ramp; Palaeoenvironment

  • Aigner, T. 1984. Fossil-Lagerstatten Nr. 59: Dynamic stratigraphy of epicontinental carbonates, Upper Muschelkalk (M. Triassic), South-German Basin. Neues Jahrbuch für Geologie und Palaontologie, Abhandlungen, 169, 127-159.Google Scholar

  • Allington-Jones, Braddy, S.J. and Trueman, C.N. 2010. Palaeoenvironmental implications of the ichnology and geochemistry of the Westbury Formation (Rhaetian), Westbury-On-Severn, South-West England. Palaeontology , 53, 491-506.CrossrefGoogle Scholar

  • Alonso-Muruaga, P.J., Buatois, L.A. and Limarino, C.O. 2013. Ichnology of the Late Carboniferous Hoyada Verde Formation of western Argentina: exploring postglacial shallow- marine ecosystems of Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 228-238.Google Scholar

  • Alpert, S.P. 1974. Systematic review of the genus Skolithos. Journal of Paleontology, 48, 661-669.Google Scholar

  • Alpert, S.P. 1975. Planolites and Skolithos from the Upper Precambrian- Lower Cambrian White-Inyo Mountains, California. Journal of Paleontology, 49, 509-521.Google Scholar

  • Angulo, S. and Buatois, L.A. 2012. Ichnology of a Late Devonian- Early Carboniferous low-energy seaway: The Bakken Formation of subsurface Saskatchewan, Canada: Assessing paleoenvironmental controls and biotic responses. Palaeogeography, Palaeoclimatology, Palaeoecology , 315-316, 46-60.Google Scholar

  • Archer, A.W. 1984. Preservational control of trace-fossil assemblages: Middle Mississippian Carbonates of South- Central Indiana. Journal of Paleontology, 58, 285-297.Google Scholar

  • Archer, A.W. and Maples, C.G. 1984. Trace-fossil distribution across a marine-to-nonmarine gradient in the Pennsylvanian of Southwerstern Indiana. Journal of Paleontology, 58, 448-466.Google Scholar

  • Assmann, P. 1944. Die Stratigraphie der oberschlesischen Trias. Teil II: Der Muschelkalk. Abhandlungen des Reichsamts für Bodenforschung, Neue Folge, 208, 1-124, Berlin.Google Scholar

  • Avanzini, M., Contard, P., Ronchi, A. and Santi, G. 2011. Ichnosystematics of the lower Permian invertebrate traces from the Collio and Mt. Luco Basins (North Italy). Ichnos, 18, 95-113.CrossrefGoogle Scholar

  • Bachmann, G.H., Hauschke, N. and Kozur, H.W. 2009. Buntsandstein Cyclicity and Conchostracan Biostratigraphy of the Halle (Saale) Area, Central Germany. In: G.H.Google Scholar

  • Bachman, N. Hauschke and H.W. Kozur (Eds), 6th International Field Workshop on the Triassic of Germany, September 12-13, 2009. Martin-Luther-Universitat Halle- Wittenberg Institut fur Geowissenschaften, pp. 1-30. Halle.Google Scholar

  • Bann, K.L. and Fielding, C.R. 2004. An integrated ichnological and sedimentological comparison of non-deltaic shoreface and subaqueous delta deposits in Permian reservoir units of Australia. In: D. McIlroy (Ed.), The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society Special Publication, 228, 273-310.Google Scholar

  • Bann, K.L., Fielding, C.R., MacEachern, J.A. and Tye, S.C. 2004. Differentiation of estuarine and offshore marine deposits using integrated ichnology and sedimentology: Permian Pebbley Beach Formation, Sydney Basin, Australia. In: D. McIlroy (Ed.), The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society Special Publication, 228, 179-211.CrossrefGoogle Scholar

  • Baranowski, Z., Haydukiewicz, A., Kryza, R., Lorenc, S., Muszyński, A., Solecki, A. and Urbanek, Z. 1990. Outline of the geology of the Gory Kaczawskie (Sudetes, Poland). Neues Jahrbuch für Geologie und Pälaontologie, Abhandlungen , 179, 223-257.Google Scholar

  • Bassi, D., Humblet, M. and Iryu, Y. 2011. Recent ichnocoenosis in deep water macroids, Ryukyu Islands, Japan. Palaios, 26, 232-238.CrossrefGoogle Scholar

  • Bassi, D., Iryu, Y., Braga, J.C., Takayanagi, H. and Tsuji, Y. 2013. Bathymetric distribution of ichnocoenoses from recent subtropical algal nodules off Fraser Island, eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology , 369, 58-66Google Scholar

  • Baucon, A. and Felletti, F. 2013a. The IchnoGIS method: Network science and geostatistics ichnology. Theory and application (Grado lagoon, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 375, 85-111.Google Scholar

  • Baucon, A. and Felletti, F. 2013b. Neoichnology of a barrierisland system: the Mula di Muggia (Grado lagoon, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 375, 112-124.Google Scholar

  • Belaústegui, Z., Gibert, J.M. de, Domenech, R., Muňiz, F. and Martinell, J. 2012. Clavate borings in a Miocene cetacean skeleton from Tarragona (NE Spain) and the fossil record of marine bone bioerosion. Palaeogeography, Palaeoclimatology, Palaeoecology, 323-325, 68-74.Google Scholar

  • Benner, J.S., Ekdale, A.A. and Gibert, J.M. de 2004. Macroborings (Gastrochaenolites) in Lower Ordovician hardgrounds of Utah: sedimentologic, paleoecologic and evolutionary implications. Palaios, 19, 543-550.CrossrefGoogle Scholar

  • Bertling, M. 1999. Taphonomy of trace fossils at omission surfaces (Middle Triassic, East Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 149, 27-40.Google Scholar

  • Bertling, M., Braddy, S.J., Bromley, R.G., Demathieu, G.R., Genise, J., Mikulaš, R., Nielsen, J.K., Nielsen, K.S.S., Rindsberg, A.K., Schlirf, M. and Uchman, A. 2006. Names for trace fossils: a uniform approach. Lethaia, 39, 265-286.CrossrefGoogle Scholar

  • Billings, E. 1862. New species of fossils from different parts of the Lower, Middle and Upper Silurian rocks of Canada. In: Palaeozoic Fossils, volume I (1861-1865). Geological Survey of Canada, Dawson Brothers, 96-168, Montreal.Google Scholar

  • Bjerstedt, T.W. 1988. Trace fossils from the Early Mississippian Price Delta, southeast West Virginia. Journal of Paleontology , 62, 506-519.Google Scholar

  • Blissett, D.J. and Pickerill, R.K. 2007. Systematic ichnology of microborings from the Cenozoic White Limestone Group, Jamaica, West India. Scripta Geologica, 134, 77-108. Google Scholar

  • Bodzioch, A. 1991a. The Rot/Muschelkalk boundary. In: H. Hagdorn, T.D. Simon and J. Szulc (Eds), Muschelkalk. A Field Guide, pp. 63-64. Goldschneck-Verlag; Stuttgart.Google Scholar

  • Bodzioch, A. 1991b. Stop B14, Tarnow Opolski (Poland, Upper Silesia). In: H. Hagdorn, T. D. Simon and J. Szulc (Eds), Muschelkalk. A Field Guide, pp. 69-71. Goldschneck- Verlag; Stuttgart.Google Scholar

  • Bodzioch, A. 1997. Formacja karchowicka: definicja i stratygrafia. Uniwersytet Adama Mickiewicza w Poznaniu. Geologos, 2, 165-199.Google Scholar

  • Bodzioch, A. and Kwiatkowski, S. 1992. Sedimentation and early diagenesis of the Cavernous Limestone (Roth) of Gogolin, Silesian-Krakow Region, Poland. Annales Societatis Geologorum Poloniae, Journal of the Polish Geological Society, 62, 223-242.Google Scholar

  • Bottjer, D.J. and Droser, M.L. 1991. Ichnofabric and basin analysis. Palaios, 6, 199-205.CrossrefGoogle Scholar

  • Bover-Arnal, T., Jaramillo-Vogel, D., Showani, A. and Strasser, A. 2011. Late Eocene transgressive sedimentation in the western Swiss Alps: Records of autochthonous and quasi-autochthonous biofacies on a karstic rocky shore. Palaeogeography, Palaeoclimatology, Palaeoecology, 312, 24-39.Google Scholar

  • Boyer, D.L. and Droser, M.L. 2011. A combined trace-and body-fossil approach reveals high-resolution record of oxygen fluctuations in Devonian seas. Palaios, 26, 500-508.CrossrefGoogle Scholar

  • Bradshaw, M.A. 2010. Devonian trace fossils of the Horlick Formation, Ohio Range, Antarctica: Systematic description and palaeoenvironmental interpretation. Ichnos, 17, 58-114.CrossrefGoogle Scholar

  • Brenchley, P.J. and Harper, D.A.T. 1998. Palaeoecology. Ecosystems, environments and evolution. Chapter. V. Trace fossils, pp. 148-178, Chapman and Hall; Oxford.Google Scholar

  • Bressan, G.S. and Palma, R.M., 2009. Trace fossils from the Lower-Middle Jurassic Bardas Blances Formation, Neuquen Basin, Mendoza Province, Argentina. Acta Geologica Polonica, 59, 201-220.Google Scholar

  • Bromley, R.G. 1975. Trace fossils at omission surfaces. In: R.W. Frey (Ed.), The Study of Trace Fossils, A Synthesis of Principles, Problems, and Procedures in Ichnology, pp. 399-428.Google Scholar

  • Bromley, R.G. 1996. Trace Fossils. Biology, Taphonomy and Applications, pp. 1-347. Chapman and Hall; London.Google Scholar

  • Bromley, R.G. and Asgaard, U. 1993. Two bioerosion ichnofacies produced by early and late burial associated with sea-level change. Geologische Rundschau, 82, 276-280.Google Scholar

  • Bromley, R.G. and Ekdale, A.A. 1984. Trace fossil preservation in flint in the European chalk. Journal of Paleontology , 58, 298-311.Google Scholar

  • Bromley, R.G., Buatois, L.A., Mangano, G., Genise, J.F. and Melchor, R.N. 2007. Sediment-Organism Interactions: A Multifaceted Ichnology. SEPM Special Publication, 88, 1-393.Google Scholar

  • Buatois, L.A. and Encinas, A. 2011. Ichnology, sequence stratigraphy and depositional evolution of an Upper Cretaceous rocky shoreline in central Chile: Bioerosion structures in a transgressed metamorphic basement. Cretaceous Research, 32, 203-212.CrossrefGoogle Scholar

  • Buatois, L.A. and Mangano, M.G. 2002. Trace fossils from Carboniferous floodplain deposits in western Argentina: implications for ichnofacies models of continental environments. Palaeogeography, Palaeoclimatology, Palaeoecology , 183, 71-86.Google Scholar

  • Buatois, L. A. and Mangano, M. G. 2009. Applications of ichnology in lacustrine sequence stratigraphy: Potential and limitations. Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 127-142.Google Scholar

  • Buatois, L. and Mangano, M.G. 2011. Ichnology, Organism- Substrate Interactions in Space and Time, pp. 1-358. Cambridge University Press; Cambridge.Google Scholar

  • Buatois, L. and Mangano 2013. Ichnodiversity and ichnodisparity: significance and caveats. Lethaia, 46, 281-292.CrossrefGoogle Scholar

  • Buatois, L.A., Gingras, M.K., MacEachern, J., Mangano, M.G., Zonnveld, J.P., Pemberton, S.G., Netto, R.G. and Martin, A. 2005. Colonization of brakish-water systems through time: evidence from the trace-fossil record. Palaios, 20, 321-347.CrossrefGoogle Scholar

  • Buatois, L.A., Mangano, M.G., Alissa, A. and Carr, T.R. 2002. Sequence stratigraphic and sedimentologic significance of biogenic structures from a late Paleozoic marginal-to openmarine reservoir, Morrow Sandstone, subsurface of southwest Kansas, USA. Sedimentary Geology, 152, 99-132.Google Scholar

  • Buckman, J.O. 1994. Archaeonassa Fenton and Fenton 1937 revisited. Ichnos, 3, 185-192.Google Scholar

  • Cabrera, M.I.L. and Olivero, E.B. 2011. An Eocene articulated Polyplacophora (Mollusca) from the La Meseta Formation, Antarctica and the stratigraphy of the fossil-bearing strata. Journal of Paleontology, 85, 970-976.CrossrefGoogle Scholar

  • Cachão, M., Silva, C.M. da, Santos, A., Domenech, R., Martinell, J. and Mayoral, E. 2009. The bioeroded megasurface of Oura (algarve, south Portugal): implications for the Neogene stratigraphy and tectonic evolution of southwest Iberia. Facies, 55, 213-225.CrossrefGoogle Scholar

  • Caracuel, J.E., Corbi, H., Giannetti, A., Monaco, P., Soria, J.M., Tent-Manclus, J.E. and Yebenes, A. 2011. Paleoenvironmental changes during the Late Miocene (Messinian)- Pl transition (Bajo Segura Basin, southeastern Spain): Sedimentological and ichnological evidence. Palaios, 26, 754-766.CrossrefGoogle Scholar

  • Carmona, N. B., Buatois, L. A., Mangano, M. G. and Bromley, R. G. 2008. Ichnology of the Lower Miocene Chenque Formation, Patagonia, Argentina: animal-substrate interactions and the Modern Evolutionary Fauna. Ameghiniana , 45, 93-112.Google Scholar

  • Carmona, N.B., Buatois, L.A., Ponce, J.J. and Mangano, M.G. 2009. Ichnology and sedimentology of a tide-influenced delta, Lower Miocene Chenque Formation, Patagonia, Argentina: Trace-fossil distribution and response to environmental stresses. Palaeogeography, Palaeoclimatology, Palaeoecology, 273, 75-86.Google Scholar

  • Carmona, N.B., Mangano, M.G., Buatois, L.A. and Ponce, J.J. 2007. Bivalve trace fossils in an early Miocene discontinuity surface in Patagonia, Argentina: Burrowing behaviour and implications for ichnotaxonomy at the firmground- hardground divide. Palaeogeography, Palaeoclimatology, Palaeoecology, 255, 329-341.Google Scholar

  • Carmona, N.B., Mangano, M.G., Buatois, L.A. and Ponce, J.J. 2010. Taphonomy and paleoecology of the bivalve trace fossil Protovirgularia in deltaic heterolithic facies of the Miocene Chenque Formation Patagonia, Argentina. Journal of Paleontology, 84, 730-738.CrossrefGoogle Scholar

  • Carmona, N.B., Ponce, J. J., and Mangano, M. G. 2006. Variability of the Glossifungites ichnofacies at the boundary between the Sarmiento Formation (middle Eocene - early Miocene) and Chenque Formation (early Miocene) in San Jorge Gulf, Chubut, Argentina. Ameghiniana, 43, 413-425.Google Scholar

  • Carvalho, C.N., Viegas, P.A. and Cachao, M. 2007. Thalassinoides and its producer: populations of Mecochirus buried within their burrow systems, Boca do Chapim Formation (Lower Cretaceous), Portugal. Palaios, 22, 104-109.CrossrefGoogle Scholar

  • Checconi, A., Bassi, D., Carannante G. and Monaco, P. 2010. Re-deposited rhodoliths in the Middle Miocene hemipelagic deposits of Vitulano (Southern Apennines, Italy): coralline assemblage characterization and related trace fossils. Sedimentary Geology, 225, 50-66.Google Scholar

  • Chen, Z.-Q., Fraiser, M.L. and Bolton, C. 2012. Early Triassic trace fossils from Gondwana Interior Sea: implications for ecosystem recovery following the end-Permian mass extinction in south high-latitude regon. Gondwana Research , 22, 238-255.CrossrefGoogle Scholar

  • Chen, Z-Q., Tong, J. and Fraiser, M.L. 2011. Trace fossil evidence for restoration of marine ecosystems following the end-Permian mass extinction in the Lower Yangtze region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 449-474.CrossrefGoogle Scholar

  • Chen, Z., Zhou, C., Meyer, M., Xiang, K., Schiffbauer, J.D., Yuan, X. and Xiao, S. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research, 224, 690-701.CrossrefGoogle Scholar

  • Cherns, L., Wheeley, J.R. and Karis. L. 2006. Tunneling trilobites: habitual infaunalism in an Ordovician carbonate floor. Geology, 34, 657-660.CrossrefGoogle Scholar

  • Chrząstek, A. 1995. The Muschelkalk from Jerzmanice Zdroj. Acta Universitatis Wratislaviensis No 1607, Prace Geologiczno - Mineralogiczne, 64, 61-79. [In Polish with English summary] Google Scholar

  • Chrząstek, A. 2002. Stratigraphy and sedimentation conditions of Rot and Lower Muschelkalk of the North Sudetic Basin. Acta Universitatis Wratislaviensis No 2383, Prace Geologiczno - Mineralogiczne, 73, 1-112. [In Polish with English summary] Google Scholar

  • Chrząstek, A. 2004. Twarde dno w dolnym wapieniu muszlowym w Raciborowicach Gornych (niecka połnocnosudecka). In: J. Muszer (Ed.), XIX Konferencja Paleobiologow i Biostratygrafow PTG, “Zapis paleontologiczny jako wskaźnik środowisk” (16-18.09), pp. 6-17. Wrocław.Google Scholar

  • Chrząstek, A. 2007. Ichnoasocjacje dolnego wapienia muszlowego niecki połnocnosudeckiej. In: A. Żylińska (Ed.), Granice Paleontologii. XX Konferencja Naukowa Paleobiologow i Biostratygrafow PTG, Św. Katarzyna pod Łysicą, 10-13.09, pp. 43-45. Warszawa.Google Scholar

  • Chrząstek, A. 2008a. Vertebrate remains from the Lower Muschelkalk of Raciborowice Gorne (North-Sudetic Basin, SW Poland). Geological Quarterly, 52, 225-238.Google Scholar

  • Chrząstek, A. 2008b. Trace fossils from the Lower Muschelkalk of the North-Sudetic Basin (SW Poland). In: A. Uchman (Ed.), Abstract Book and the Intra-Congress Field Trip Guidebook. The Second International Congress on Ichnology, Krakow, Poland, 29.08-08.09, p. 27, Krakow.Google Scholar

  • Chrząstek, A. 2013. Middle Turonian trace fossils from the Bystrzyca and Długopole sandstones in the Nysa Kłodzka Graben (Sudety Mountains, SW Poland). Geological Quarterly, 57, 443-466.Google Scholar

  • Chrząstek, A. and Niedźwiedzki, R. 1998. Vertebrates of the Roetian and Lower Muschelkalk In Silesia. Acta Universitatis Wratislaviensis, No 2004, Prace Geologiczno - Mineralogiczne, 64, 69-81. [In Polish with English summary] Google Scholar

  • Chrząstek, A. and Wojewoda, J. 2011. Mesozoic of South- Western Poland (The North Sudetic Synclinorium). In: A. Żelaźniewicz, J. Wojewoda and W. Ciężkowski (Eds), Mezozoik i Kenozik Dolnego Śląska, Zjazd PTG, WIND, pp. 1-10. Wrocław. [In Polish, with English summary] Google Scholar

  • Chrząstek, A., Kosarewicz, U. and Raczyński P. 2004. Cechsztyn i trias w niecce połnocnosudeckiej. In: J. Muszer (Ed.), Zapis paleontologiczny jako wskaźnik paleośrodowisk. XIX Konferencja Naukowa Paleobiologow i Biostratygrafow PTG poświęcona 300-leciu Uniwersytetu Wrocławskiego, 16-18.09, pp. 108-112, Wrocław. [In Polish] Google Scholar

  • Cummings, J.P. and Hodgson, D.M. 2011. Assessing controls on the distribution of ichnotaxa in submarine fan environments, the Basque Basin, Northern Spain. Sedimentary Geology, 239, 162-187.CrossrefGoogle Scholar

  • Curran, H.A. 1985. The trace fossil assemblage of a Cretaceous nearshore environment: Englishtown Formation of Delaware, U.S.A. In: H.A. Curran (Ed.), Biogenic structures: their use in interpreting depositional environments, SEPM Special Publication, 35, 261-276.Google Scholar

  • Davies, N.S., Herringshaw, L.G. and Raine, R.J. 2009. Controls on trace fossil diversity in an Early Cambrian epeiric sea: new perspectives from northwest Scotland. Lethaia, 42, 17-30.CrossrefGoogle Scholar

  • Desai, B.G. and Saklani, R.D. 2012. Significance of the trace fossil Balanoglossites Magdefrau, 1932 from the Lower Cretaceous Guneri member (Bhuj formation) of the Guneri dome, Kachchh, India. Swiss Journal of Palaeontology , 131, 255-263.Google Scholar

  • Desjardins, P.R., Mangano, M.G., Buatois, L.A. and Pratt, B.R. 2010. Skolithos pipe rock and associated ichnofabrics from the southern Rocky Mountains, Canada: colonization trends and environmental controls in an early Cambrian sand-sheet complex. Lethaia, 43, 507-528.CrossrefGoogle Scholar

  • Desjardins, P.R., Buatois, L.A. and Mangano, M.G. 2012. Tidal flats and subtidal sand bodies. In: D. Knaust and R.G. Bromley (Eds), Trace fossils as indicators of sedimentary environments, Developments in Sedimentology, 64, 529-561.Google Scholar

  • Donovan, S.K. 2002. A new ichnospecies of Gastrochaenolites Leymerie from the Pleistocene Port Morant Formation of southeast Jamaica and the taphonomy of calcareous linings in clavate borings. Ichnos, 9, 61-66.CrossrefGoogle Scholar

  • Donovan, S.K. and Hensley, C. 2006. Gastrochaenolites Leymerie in the Cenozoic of the Antillean Region. Ichnos, 13, 11-19.CrossrefGoogle Scholar

  • Dronov, A., V., Mikulaš, R. and Logvinova, M. 2002. Trace fossils and ichnofabrics across the Volkhov depositional sequence (Ordovician, Arenigian of St. Petersburg Region, Russia). Journal of the Czech Geological Society, 47, 133-146.Google Scholar

  • Dronov, A.V. 2010. Morphological variations of vertical borings and burrows from the Ordovician of East Baltic: ichnotaxonomical implications. In: A.V. Dronov (Ed.), IV Workshop on Ichnotaxonomy. Abstracts. June 21-26, pp. 31-32. Moscow - St.-Petersburg.Google Scholar

  • Droser, M.L. 1991. Ichnofabric of the Paleozoic Skolithos Ichnofacies and the Nature and Distribution of Skolithos piperock. Palaios, 6, 316-325.CrossrefGoogle Scholar

  • Droser, M.L. and Bottjer, D.J. 1986. A semiquantitative classification of ichnofabric. Journal of Sedimentary Petrology , 56, 558-569.CrossrefGoogle Scholar

  • Droser, M.L. and Bottjer, D.J. 1989. Ichnofabric of sandstones deposited in high-energy nearshore environment: measurement and utilization. Palaios, 4, 598-604.CrossrefGoogle Scholar

  • Eisawi, A.A.M., Babikir, I. A.A. and Salih, K.A. O. 2011. Paleoecological significance of newly discovered trace fossils near the Gedaref town, eastern Sudan. Journal of African Earth Sciences, 61, 233-237.CrossrefGoogle Scholar

  • Ekdale, A.A. and Bromley, R.G. 1984. Comparative ichnology of shelf-sea and deep-sea chalk. Journal of Paleontology , 58, 322-332.Google Scholar

  • Ekdale, A.A. and Bromley, R.G. 2001a. Bioerosional innovation for living in carbonate hardgrounds in the Early Ordovician of Sweden. Lethaia, 34, 1-12.Google Scholar

  • Ekdale, A.A. and Bromley, R.G. 2001b. A day and a night in the life of a cleft-foot clam: Protovirgularia-Lockeia- Lophoctenium. Lethaia, 34, 119-124.Google Scholar

  • Ekdale, A.A. and Bromley, R.G. 2003. Paleoethologic interpretation of complex Thalassinoides in shallow-marine limestones, Lower Ordovician, southern Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology, 192, 221-227.Google Scholar

  • Ekdale, A.A. and Mason, T.R. 1988. Characteristic trace-fossil associations in oxygen-poor sedimentary environments . Palaios, 16, 721-723.Google Scholar

  • Erdoğan, B., Uchman, A., Gungor, T. and Ozgul, N. 2004.Litostratigraphy of the Lower Cambrian metaclastics and their age based on trace fossils in the Sandikli region, southwestern Turkey. Geobios, 37, 346-360.CrossrefGoogle Scholar

  • Farinati, E.A. 2007. Trace fossils in firm sediment and skele- tal substrates, Miocene to Pliocene, Patagonia, Argentina.In: R.G. Bromley, L.A. Buatois, G. Mangano, J.F. Genise and R.N. Melchor (Eds), Sediment-organisms interactions: A multifaceted ichnology. SEPM Special Publication , 88, 279-285.Google Scholar

  • Farinati, E. and Zavala, C. 2002. Trace fossils on shelly substrate. An example from the Miocene of Patagonia, Argentina. Acta Geologica Hispanica, 37, 29-36.Google Scholar

  • Fenton, C.L. and Fenton, M.A. 1937. Archaeonassa, Cambrian snail trails and burrows. American Midland Naturalist , 18, 454-456.CrossrefGoogle Scholar

  • Fernández, D.E. and Pazos, P.J. 2013. Xiphosurid trackways in a Lower Cretaceous tidal flat in Patagonia: Palaeoecological implications and the involvement of microbial mats in trace-fossil preservation. Palaeogeography, Palaeoclimatology, Palaeoecology, 375, 16-29.Google Scholar

  • Fernández, D.E., Pazos, J.P. and Aguirre-Urreta, M.B. 2010.Protovirgularia dichotoma-Protovirgularia rugosa: An Example of a Compound Trace Fossil from the Lower Cretaceous (Agrio Formation) of the Neuqueń Basin, Argentina. Ichnos, 17, 40-47.CrossrefGoogle Scholar

  • Fillion, D. and Pickerill, R.K. 1984. Systematic ichnology of the Middle Ordovician Trenton Group St. Lawrence Lowland, eastern Canada. Maritime Sediments and Atlantic Geology, 20, 1-41.Google Scholar

  • Fillion, D. and Pickerill, R.K. 1990. Ichnology of the Upper Cambrian? to Lower Ordovician Bell Island and Wabana groups of eastern Newfoundland, Canada. Palaeontographica Canadiana, 7, 1-119.Google Scholar

  • Fraiser, M.L. and Bottjer, D.J. 2009. Opportunistic behavior of invertebrate marine tracemakers during the Early Triassic aftermath of the end-Permian mass extinction. Australian Journal of Earth Sciences, 56, 841-857.CrossrefGoogle Scholar

  • Frey, R.W. and Seilacher, A. 1980. Uniformity in marine invertebrate ichnology. Lethaia, 13, 183-207.CrossrefGoogle Scholar

  • Frey, R.W., Curran, A. and Pemberton, S.G. 1984. Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. Journal of Paleontology , 58, 333-350.Google Scholar

  • Frey, R.W., Pemberton, S.G. and Saunders, T.D.A. 1990. Ichnofacies and bathymetry: a passive relationship. Journal of Paleontology, 64, 155-158.Google Scholar

  • Fürsich, F.T. 1974. Ichnogenus Rhizocorallium. Paläontologische Zeitschrift, 48, 16-28.CrossrefGoogle Scholar

  • Fürsich, F.T. 1975. Trace fossils as environmental indicators in the Corallian of England and Normandy. Lethaia, 8, 151-172.CrossrefGoogle Scholar

  • Fürsich, F.T. 1998. Environmental Distribution of Trace Fossils in the Jurassic of Kachchh (Western India). Facies, 39, 243-272.CrossrefGoogle Scholar

  • Fürsich, F.T. and Mayr, H. 1981. Non-marine Rhizocorallium (trace fossil) from the Upper Freshwater Molasse (Upper Miocene) of southern Germany. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 6, 321-333.Google Scholar

  • Gaillard, Ch. and Racheboeuf, P.R. 2006. Trace fossils from nearshore to offshore environments: Lower Devonian of Bolivia. Journal of Paleontology, 80, 1205-1226.CrossrefGoogle Scholar

  • Ghibaudo, G., Grandesso, P., Massari, F. and Uchman, A.1996. Use of trace fossils in delineating sequence stratigraphic surfaces (Tertiary Venetian Basin, northeastern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology , 120, 261-279.CrossrefGoogle Scholar

  • Giannetti, A. and McCann, T. 2010. The Upper Paleocene of the Zumaya section (northern Spain): review of the ichnological content and preliminary palaeoecological interpretation. Ichnos, 17, 137-161.CrossrefGoogle Scholar

  • Gibert, J.M. de and Ekdale, A.A. 2002. Ichnology of a restricted epicontinental sea, Arapien Shale, Middle Jurassic, Utah, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 183, 275-286.Google Scholar

  • Gibert J.M. de and Martinell J., 1998. Ichnofabric analysis of the Pliocene marine sediments of the Var Basin (Nice, SE France). Geobios, 31, 271-281.CrossrefGoogle Scholar

  • Gibert, J. M. de, Domenech, R. and Martinell, J. 2004. An ethological framework for animal bioerosion trace fossils upon mineral substrates with proposal of a new class, fixichnia. Lethaia, 37, 429-437.CrossrefGoogle Scholar

  • Gibert, J.M. de, Domenech, R. and Martinell, J. 2012. Rocky shorelines. In: D. Knaust and R.G. Bromley (Eds), Trace fossils as indicators of sedimentary environments, Developments in Sedimentology, 64, 441-462.Google Scholar

  • Gibert, J. M. de, Ramos, E. and Marzo, M. 2011. Trace fossils and depositional environments in the Hawaz Formation, Middle Ordovician, western Libya. Journal of African Earth Sciences, 60, 28-37.CrossrefGoogle Scholar

  • Gillette, L., Pemberton, S.G. and Sarjeant W.A.S., 2003. A Late Triassic invertebrate ichnofauna from Ghost Ranch, New Mexico. Ichnos, 10, 141-151.CrossrefGoogle Scholar

  • Gingras, M.K., MacEachern, J.A. and Dashtgard, S.E. 2011. Process ichnology and the elucidation of physic-chemical stress. Sedimentary Geology, 237, 115-134.Google Scholar

  • Gingras, M.K., Rasanen, M. and Ranzi, A. 2002. The significance of bioturbated inclined heterolithic stratification in the southern part of the Miocene Solimoes Formation, Rio Acre, Amazonia Brazil. Palaios, 17, 591-601.CrossrefGoogle Scholar

  • Głuchowski, E. and Salamon, M. 2005. The Lower Muschelkalk crinoids from Raciborowice, North-Sudetic Basin, SW Poland. Geological Quarterly, 49, 83-92.Google Scholar

  • Głuszek, A. 1998. Trace fossils from Late Carboniferous storm deposits, Upper Silesia Coal Basin, Poland. Acta Palaeontologica Polonica, 43, 517-546.Google Scholar

  • Goldring, R. and Kaźmierczak, J. 1974. Ecological succession in intraformational hardground formation. Palaeontology , 17, 949-962.Google Scholar

  • Goldring, R., Pollard, J.E. and Radley, J.D. 2005. Trace fossils and pseudofossils from the Wealden strata (non-ma- rine Lower Cretaceous) of southern England. Cretaceous Research, 26, 665-685.CrossrefGoogle Scholar

  • Gouramanis, C., Webb, J.A. and Warren, A.A. 2003. Fluviodeltaic sedimentology and ichnology of part of the Silurian Grampians Group, western Victoria. Australian Journal of Earth Sciences, 50, 811-825.CrossrefGoogle Scholar

  • Gradziński, R. and Uchman, A. 1994. Trace fossils from interdune deposits-an example from the Lower Triassic aeolian Tumlin Sandstone, central Poland. Palaeogeography, Palaeoclimatolology, Palaeoecology, 108, 121-138.CrossrefGoogle Scholar

  • Greene, T.J., Gingras, M.K., Gordon, G.S. and McKeel, D.R. 2012. The significance of deep-water cryptic bioturbation in slope-channel massive sand deposits of the lower Rio Dell Formation, Eel River basin, California. Marine and Petroleum Geology, 29, 152-174.CrossrefGoogle Scholar

  • Hagdorn, H.D. 1991. The Muschelkalk in Germany - An Introduction. In: H. Hagdorn, T. Simon and J. Szulc (Eds), Muschelkalk. A Field Guide, pp. 7-21. Goldschneck-Verlag Werner K. Weidert Korb; Stuttgart.Google Scholar

  • Hagdorn, H.D. and Głuchowski, E. 1993. Palaeobiogeography and Stratigraphy of Muschelkalk Echinoderms (Crinoidea, Echinoidea) in Upper Silesia. In: H. Hagdorn and A. Seilacher (Eds), Muschelkalk Schontaler Symposium1991. Sonderbande der Gesellschaft fur Natur-Kunde Wurttemberg, 2, pp. 165-176. Goldschneck; Stuttgart.Google Scholar

  • Hagdorn, H., Horn, M. and Simon, T. 1998. Muschelkalk. In: G.H. Backmann, G. Borg, H. Haubold, H. Heinisch, C. Lempp, H. Polmann and P. Wycisk (Eds), Epicontinental Triassic International Symposium Halle 1998 - Excursions. Hallesches Jahrbuch für Geowissenschaften, Reihe B: Geologie, Paläontologie, Mineralogie, Beiheft, 6, 35-44.Google Scholar

  • Haldeman, S.S., 1840. Supplement to number of “A monograph of the Limniades, and other fresh water univalve shells of North America”, containing descriptions of apparently new animal in different classes, and the names and characters of the subgenera in Paludina and Anculosa. Philadelphia, p. 3.Google Scholar

  • Hall, J. 1843. Geology of New-York. Part 4. Comprising the Survey of the Fourth Geological District, 525 pp. Carroll and Cook; Albany.Google Scholar

  • Hall, J. 1847. Paleontology of New York. Volume 1.C, 1 - 362. Van Benthuysen; Albany.Google Scholar

  • Hautmann, M. 2006. Shell morphology and phylogenetic origin of oysters. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 668-671.Google Scholar

  • Han, Y. and Pickerill, R.K. 1994. Taxonomic reassessment of Protovirgularia M’Coy 1850 with new examples from the Paleozoic of New Brunswick, eastern Canada. Ichnos, 3, 203-212.Google Scholar

  • Hantzschel, W. 1975. Trace fossils and problematica. In: C. Teichert (Ed.), Treatise on Invertebrate Paleontology, Part W, Miscellanea Supplement I, 1-269, Geological Society of America, Boulder-Colorado and University of Kansas; Lawrence-Kansas.Google Scholar

  • Heinberg C. and Birkelund, T. 1984. Trace-fossil assemblages and basin evolution of the Vardekloft Formation (Middle Jurassic, Central East Greenland). Journal of Paleontology , 58, 362-397.Google Scholar

  • Hembree, D.I., Nadon, G.C. and King, M.R. 2011. Large complex burrow systems from freshwater deposits of the Monongahela Group (Virgilian), Southeast Ohio, USA, Palaeogeography, Palaeoclimatology, Palaeoecology, 300, 128-137.CrossrefGoogle Scholar

  • Hoffman, M. and Uchman, A. 2008. Stop 2. Dębnik - the new quarry - Devonian (Frasnian) limestones. In: A. Uchman (Ed.), The intra-congress field trip guidebook. The Second International Congress on Ichnology, ICHNIA 2008, pp. 144-152. Krakow.Google Scholar

  • Hofmann, R., Goudemand, N., Wasmer, M. and Bucher, H. 2011. New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 216-226.Google Scholar

  • Hofmann, R., Mangano, M.G., Elicki, O. and Shinaq, R. 2012. Paleoecologic and biostratigraphuc significance of trace fossils from shallow- to marginal-marine environments from the Middle Cambrian (Stage 5) of Jordan. Journal of Paleontology, 86, 931-955.CrossrefGoogle Scholar

  • Hoffmann, M., Paszkowski, M., Uchman, A. and Szulc, J. 2009. Facies succession and its controls on the Upper Devonian- Lower Carboniferous carbonate platform on the Krakow Upland. In: G. Haczewski (Ed.), Abstracts and field guide. 6th International Field Workshop on the Triassic of Germany, 12-13.09. Martin-Luther-Universitat Halle-Wittenberg Institut fur Geowissenschaften, pp. 49-65, Halle.Google Scholar

  • Holdefleis, G. 1915. Das Triasvorkommen von Gross-Hartmannsdorf in Niederschlesien. Zweiundneunzigster Jahres-Bericht der Schlesischen Gesellschaft fur vaterlandische Cultur, Band I, VI Abteilung, Breslau, 1-23.Google Scholar

  • Jach, R. 2005. Storm-dominated deposition of the Lower Jurassic crinoidal limestones in the Križna unit, Western Tatra Mountains, Poland. Facies, 50, 561-572.CrossrefGoogle Scholar

  • Jaglarz, P. and Uchman, A. 2010. A hypersaline ichnoassemblage from the middle Triassic carbonate ramp of the Tatricum domain in the Tatra Mountains, Southern Poland.Palaeogeography, Palaeoclimatology, Palaeoecology, 292, 71-81.Google Scholar

  • Jank, M., Wetzel, A. and Meyer, C.A. 2006. Late Jurassic sealevel fluctuations in NW Switzerland (Late Oxfordian to Late Kimmeridgian): closing the gap between the Boreal and Tethyan realm in Western Europe. Facies, 52, 487-519.CrossrefGoogle Scholar

  • Jin, J., Harper, D.A.T., Rasmussen, J.A. and Sheehan, P.M.2011. Late Ordovician massive-bedded Thalassinoides ichnofacies along the palaeoequator of Laurentia. Palaeo- geography, Palaeoclimatology, Palaeoecology, 367-368, 73-88.Google Scholar

  • Johnson, M.E., Wilson, M.A. and Medden, J.A. 2010. Borings in Quartzite Surf Boulders from the Upper Cambrian Basal Deadwood Formation, Black Hills of South Dakota.Ichnos, 17, 48-55.CrossrefGoogle Scholar

  • Kaim, A. 1997. Brachiopod-bivalve assemblages of the Middle Triassic Terebratula Beds, Upper Silesia, Poland. Acta Palaeontologica Polonica, 42, 333-359.Google Scholar

  • Kamola, D.L. 1984. Trace fossils from marginal-marine facies of the Spring Canyon Member, Blackhaw Formation (Upper Cretaceous), East-Central Utah. Journal of Paleontology , 58, 529-541.Google Scholar

  • Kane, I.A. 2010. Turbulence, displacement, death and worms: a day in the life of a fluvial Carboniferous bivalve.Lethaia, 43, 381-395.Google Scholar

  • Kaźmierczak, J. and Pszczołkowski, A. 1969. Synsedimentary discontinuities in the Lower Kimeridgian of the Holy Cross Mountains. Acta Geologica Polonica, 18, 587-612.Google Scholar

  • Keighley, D.G. and Pickerill, R.K. 1995. Commentary: the ichnotaxa Palaeophycus and Planolites, historical perspective and recommendations. Ichnos, 3, 301-309.CrossrefGoogle Scholar

  • Kelly, S.R.A. and Bromley, R.G. 1984. Ichnological nomenclature of clavate borings. Palaeontology, 27, 793-807.Google Scholar

  • Kennedy, W.J. 1975. Trace fossils in carbonate rocks. In: R.W. Frey (Ed.), The study of trace fossils, A synthesis of principles, problems, and procedures in ichnology, 377-398.Google Scholar

  • Kędzierski, J. 2002. Sequenzstratigraphie des Unteren Muschelkalks im ostlichen Teil des Germanischen Beckens (Deutschland, Polen). Hallesches Jahrbuch für Geowissenschaften, Reihe B: Geologie., Paläontologie, Mineralogie , 16, 1-52.Google Scholar

  • Kędzierski M. and Uchman A., 2001. Ichnofabric of the Upper Cretaceous marlstones in the Opole region, southern Poland. Acta Geologica Polonica, 51, 81-91.Google Scholar

  • Kędzierski, J. and Szulc, J. 1996. Anisian conodonts of the Lower Silesia and their significance for reconstruction of the Muschelkalk transgression in the eastern part of the Germanic Basin. In: J. Dzik (Ed.), 6th European Conodont Symposium. Abstracts. Institute of Paleobiology PAN, p.28. Warszawa.Google Scholar

  • Kim J.-Y. 1994. A unique occurrence of Lockeia from the Yeongheung Formation (Middle Ordovician), Yeongwed, Korea. Ichnos, 3, 219-225.CrossrefGoogle Scholar

  • Kim, J.-Y., Keighley, D.G., Pickerill, R.K., Hwang, W. and Kim, K.-S. 2005. Trace fossils from marginal lacustrine deposits of the Cretaceous Jinju Formation, southern coast of Korea. Palaeogeography, Palaeoclimatology, Palaeoecology , 218, 105-124.Google Scholar

  • Kim, J.-Y., Kim, K.-S. and Pickerill, R.K. 2002. Cretaceous nonmarine trace fossils from the Hasandong and Jinju Formations of the Namhae Area, Kyongsangnamdo, southeast Korea. Ichnos, 9, 41-60.CrossrefGoogle Scholar

  • Knaust, D. 1998. Trace fossils and ichnofabric on the Lower Muschelkalk carbonate ramp (Triassic) of Germany: tool for high-resolution sequence stratigraphy. Geologische Rundschau, 87, 21-31.CrossrefGoogle Scholar

  • Knaust, D. 2002. Ichnogenus Pholeus Fiege, 1944, revisited.Journal of Paleontology, 76, 882-891.Google Scholar

  • Knaust, D. 2004. The oldest Mesozoic nearshore Zoophycos : evidence from the German Triassic. Lethaia, 37, 297-306.CrossrefGoogle Scholar

  • Knaust, D. 2007a. Invertebrate trace fossils and ichnodiversity in shallow-marine carbonates of the German Middle Triassic (Muschelkalk). In: R.G. Bromley, L., Buatois, G.Mangano, J.F. Genise and R.N. Melchor (Eds), Sediment- Organism Interactions: A Multifaceted Ichnology. SEPM Special Publication, 88, 221-238.Google Scholar

  • Knaust, D. 2007b. Meiobenthic Trace Fossils as Keys to the Taphonomic History of Shallow-Marine Epicontinental Carbonates (Chapter 31). In: W. Miller, III (Ed.), Trace Fossils Concepts, Problems, Prospects. Geology Department Humboldt State University Arcata, CA, USA, Elsevier, 502-517.Google Scholar

  • Knaust, D. 2008. Balanoglossites Magdefrau, 1932 from the Middle Triassic of Germany: part of a complex trace fossil probably produced by burrowing and boring polychaetes.Paläontologische Zeitschrift, 82, 347-372.Google Scholar

  • Knaust, D. 2009. Characterisation of a Campanian deep-sea fan system in the Norwegian Sea by means of ichnofabrics.Marine and Petroleum Geology, 26, 1199-1211.CrossrefGoogle Scholar

  • Knaust, D. 2010a. Remarkably preserved benthic organisms and their traces from a Middle Triassic (Muschelkalk) mud flat. Lethaia, 43, 344-356.Google Scholar

  • Knaust, D. 2010b. The end-Permian mass extinction and its aftermath on an equatorial carbonate platform; insights from ichnology. Terra Nova, 22, 195-202.CrossrefGoogle Scholar

  • Knaust, D. 2010c. Why ichnotaxonomy is so important: Rhizocorallium and its value for facies reconstruction. In: A.V.Dronov (Ed.), IV International Workshop on Ichnotaxonomy, Abstracts, June 21-26, Abstracts, pp. 33-35. Moscov - St.-Petersburg.Google Scholar

  • Knaust, D. 2012. Trace-fossil systematics. In: D.Knaust and R.G. Bromley (Eds), Trace fossils as indicators of sedimentary environments, Developments in Sedimentology, 64, 79-101.Google Scholar

  • Knaust, D. 2013. The ichnogenus Rhizocorallium: classification, trace makers, palaeoenvironments and evolution.Earth Science Reviews, 126, 1-47.CrossrefGoogle Scholar

  • Knaust, D. and Bromley, R.G. 2012. Trace fossils as indicators of sedimentary environments. Developments in Sedimentology (series editor: A.J. van Loon), 64, 1-924. Elsevier.Google Scholar

  • Knaust, D. and Costamagna, L.G. 2012. Ichnology and sedi- mentology of the Triassic carbonates of North-west Sardinia, Italy. Sedimentology, 59, 1190-1207.CrossrefGoogle Scholar

  • Knaust, D., Curran, H.A. and Dronov, A.V. 2012. Shallowmarine carbonates. In: D.Knaust and R.G. Bromley (Eds), Trace fossils as indicators of sedimentary environments, Developments in Sedimentology, 64, 705-750.Google Scholar

  • Knaust, D., Szulc, J. and Uchman, A. 1999. Spurenfossilien in der Germanischen Trias und deren Bedeutung. In: N.Hauschke and V. Wilde (Eds), Trias - Eine ganz andere Welt. Mitteleuropa im fruhen Erdmittelalter, pp. 229-238. Dr. Friedrich Pfeil; Munchen.Google Scholar

  • Kotlarczyk, J. and Uchman, A. 2012. Integrated ichnology and ichthyology of the Oligocene Menilite Formation, Skole and Subsilesian nappes, Polish Carpathians: a proxy to oxygenation history. Palaeogeography, Palaeoclimatology, Palaeoecology, 331-332, 104-118.Google Scholar

  • Kowal-Linka, M. 2008. Formalization of the lithostratigraphy of the Gogolin Formation (Middle Triassic) in the Opole (Silesia) region. Geologos, 14, 125-161. [In Polish with English summary] Kowal-Linka, M. and Bodzioch, A. 2011. Sedimentological implications of an unusual form of the trace fossil Rhizocorallium from the Lower Muschelkalk (Middle Triassic), S. Poland. Facies, 57, 695-703.Google Scholar

  • Kryza, R., Zalasiewicz, J., Mazur, S., Aleksandrowski, P., Sergeev, S. and Larionov, A. 2007. Precambrian crustal contribution to the Variscan accretionary prism of the Kaczawa Mountains (Sudetes, SW Poland): evidence from SHRIMP dating of detrital zircons. International Journal of the Earth Science, Geologische Rundschau, 96, 1153-1162.CrossrefGoogle Scholar

  • Kumpulainen, R.A., Uchman, A., Woldehaimanot, B., Kreuser, T. and Ghirmay, S. 2006. Trace fossil evidence from the Adigrant Sandstone for an Ordovician glaciation in Eritrea, NE Africa. Journal of African Earth Sciences, 45, 408-420.CrossrefGoogle Scholar

  • La Croix, A.D., Gingras, M.K., Pemberton, S.G., Mendoza, C.A., MacEachern, J.A. and Lemiski, R.T. 2013. Biogenically enhanced reservoir properties in the Medicine Hat gas field, Alberta, Canada. Marine and Petroleum Geology , 43, 464-477.CrossrefGoogle Scholar

  • Landing, E., Geyer, G., Brasier, M.D. and Bowring, S.A.2013. Cambrian Evolutionary Radiation: Context, correlation, and chronostratigraphy - Overcoming deficiences of the first appearance datum (FAD) concept. Earth-Science Reviews, 123, 133-172.Lauridsen, B.W., Surlyk, F. And Bromley, R,G. 2011. Trace fossils of a cyclic chalk-marl succession; the Upper Maastrichtian Rordal Member, Denmark. Cretaceous Research, 32, 194-202.Google Scholar

  • Lawfield, A.M.W. and Pickerill, R.K. 2006. A novel contemporary fluvial ichnocoenose: unionid bivalves and the Scoyenia- Mermia ichnofacies transition. Palaios, 21, 391-396.CrossrefGoogle Scholar

  • Leszczyński, S. 1991. Oxygen-related controls on predepositional ichnofacies in turbidites, Guipuzcoan flysch (Albian- Lower Eocene), northern Spain. Palaios, 6, 271-280.CrossrefGoogle Scholar

  • Leszczyński, S. 2010. Coniacian-?Santonian paralic sedimentation in the Rakowice Małe area of the North Sudetic Basin, SW Poland: Sedimentary facies, ichnological record and palaeogeographical reconstruction of an evolving marine embayment. Annales Societatis Geologorum Poloniae, 80, 1-24.Google Scholar

  • Leśniak, T. 1978. Lithostratigraphical profile of Bunter Sandstone and Muschelkalk deposits in the North-Sudetic Depression.Zeszyty Naukowe AGH, Geologia, 4, 5-26. [In Polish with English summary] Google Scholar

  • Loughlin, N.J.D. and Hillier, R.D. 2010. Early Cambrian Teichichnus-dominated ichnofabrics and palaeoenvironmental analysis of the Caerfai Group, Southwest Wales, UK. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 239-251.Google Scholar

  • Lukeneder, A., Uchman, A., Gaillard, C. and Olivero, D.2012. The late Barremian Halimedides horizon of the Dolomites (Southern Alps, Italy). Cretaceous Research, 35, 199-207.CrossrefGoogle Scholar

  • MacEachern, J.A. and Burton, J.A. 2000. Firmground Zoophycos in the Lower Cretaceous Viking Formation, Alberta: A distal expression of the Glossifungites ichnofacies.Palaios, 15, 387-398.CrossrefGoogle Scholar

  • MacEachern, J. A. and Gingras, M. K. 2007. Recognition of brackish-water trace-fossil suites in the Cretaceous Western Interior Seaway of Alberta, Canada. In: R.G. Bromley, L.A. Buatois, G. Mangano, J.F. Genise and R.N. Melchor (Eds), Sediment-organisms interactions: A multifaceted ichnology. SEPM Special Publication, 88, 149-193.Google Scholar

  • MacEachern, J.A., Bann, K.L., Gingras, M.K., Zonneveld, J.- P., Dashtgard, S.E. and Pemberton, S.G. 2012. The ichnofacies paradigm. In: D.Knaust and R.G. Bromley (Eds), Trace fossils as indicators of sedimentary environments.Developments in Sedimentology, 64, 103-138.Google Scholar

  • MacEachern, J.A., Pemberton, S.G., Gingras, M.K. and Bann, K.L. 2007a. The Ichnofacies Paradigm: A Fifty-Year Retrospective.In: W. Miller, III (Ed.), Trace Fossils. Concepts, Problems, Prospects, 52-77. Elsevier.Google Scholar

  • MacEachern, J.A. Pemberton, S., Gingras, M., Bann, K. and Dafoe, L.T. 2007b. Uses of Trace Fossils in Genetic Stratigraphy. In: W. Miller, III (Ed.), Trace Fossils. Concepts, Problems, Prospects, 110-113. Elsevier.Google Scholar

  • MacNaughton, R.B. 2007. The application of trace fossils to biostratigraphy. In: W. Miller, III (Ed.), Trace fossils.Concepts, Problems, Prospects, 135-148. Elsevier.Google Scholar

  • Malchus, N. 2008. Problems concerning early oyster evolution; A reply to Marquez-Aliaga and Hautmann. Palaeogeography, Palaeoclimatology, Palaeoecology, 258, 130- Malpas, J.A., Gawthorpe, J.E., Pollard, J.E. and Sharp, J.R.2005. Ichnofabric analysis of the shallow marine Nukhul Formation (Miocene), Suez Rift, Egypt: implications for depositional processes and sequence stratigraphic evolution.Palaeogeography, Palaeoclimatology, Palaeoecology , 215, 239-264.Google Scholar

  • Mángano, M.G. and Buatois, L. 2004. Ichnology of Carboniferous tide-influenced environments and tidal flat variability in the North American Midcontinent. SEPM Special Publication, 228, 157-178.CrossrefGoogle Scholar

  • Mángano, M.G., Buatois, L.A. and Guinea F.M. 2005. Ichnology of the Alfarcito Member (Santa Rosita Formation) of northwestern Argentina: animal-substrate interactions in a Lower Paleozoic wave-domianted shallow sea.Ameghiniana, 42, 641-668.Google Scholar

  • Mángano, M.G., Buatois, L. and MacNaughton, R.B. 2012.Ichnostratigraphy. In: D.Knaust and R.G. Bromley (Eds), Trace fossils as indicators of sedimentary environments, Developments in Sedimentology, 64, 195-212.Google Scholar

  • Mángano, M.G., Buatois, L., West, R.R. and Maples, CH.G.1998. Contrasting behavioral and feeding strategies recorded by tidal-flat bivalve trace fossils from the Upper Carboniferous of Eastern Kansas. Palaios, 13, 335-351.CrossrefGoogle Scholar

  • Mángano, M.G., Buatois, L.A., Hofmann, R., Elicki, O. and Shinaq, R. 2013. Exploring the aftermath of the Cambrian explosion: the evolutionary significance of marginal- to shallow-marine ichnofaunas of Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology, 374, 1-15.Google Scholar

  • Maples, CH.G. and Suttner, L.J. 1990. Trace fossils and marine -nonmarine cyclicity in the Fountain Formation (Pennsylvanian: Morrowan/Atokan) near Manitou Springs, Colorado. Journal of Paleontology, 64, 859-880.Google Scholar

  • Marenco, K.N. and Bottjer, D.J. 2008. The importance of Planolites in the Cambrian substrate revolution. Palaeogeographgy, Palaeoclimatology, Palaeoecology, 258, 189-199.Google Scholar

  • Márquez-Aliaga, A., Jimenez-Jimenez, A.P., Checa, A.G. and Hagdorn, H. 2005. Early oysters and their supposed Permian ancestors. Palaeogeography, Palaeoclimatology, Palaeoecology, 229, 127-136.Google Scholar

  • Martin, K.D. 2004. A re-evaluation of the between trace fossils and dysoxia. In: D. McIlroy (Ed.), The application of ichnology to palaeoenvironmental and stratigraphic analysis.Geological Society Special Publication, 228, 141-156.Google Scholar

  • Mata, S.A. and Bottjer, D.J. 2011. Origin of Lower Triassic microbialites in mixed carbonate-siliciclastic successions: Ichnology, applied stratigraphy, and the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology , 300, 158-178.Google Scholar

  • Mayer, G. 1954. Ein neues Rhizocorallium aus dem Mittleren Hauptmuschelkalk von Bruchsal. Beiträge zur Naturkundlichen Forschung in Sudwestdeutschland, 13, 80-83.Google Scholar

  • Mayoral, E., Ledesma-Vazgues, J., Baarli, B.G., Santos, A., Ramalho, R., Cachao, M., Silva, C.M. da and Johnson, M.E. 2013. Ichnology in oceanic islabds; cuse studies from the Cape Verde Archipelago. Palaeogeography, Palaeoclimatology, Palaeoecology, 381-382, 47-66.Google Scholar

  • Mágdefrau, K. 1932. Uber einige Bohrgange aus dem Unteren Muschelkalk von Jena. Paläontologische Zeitschrift, 14, 150-160.CrossrefGoogle Scholar

  • McCann, T. And Pickerill, R.K. 1988. Flysch trace fossils from the Cretaceous Kodiak Formation of Alaska. Journal of Paleontology, 62, 330-348.Google Scholar

  • McCarthy, B. 1979. Trace fossils from a Permian shoreface - foreshore environment, Eastern Australia. Journal of Paleontology , 53, 345-366.Google Scholar

  • McIlroy, D. 2004a. The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society Special Publication, 228, 1-490.Google Scholar

  • McIlroy, D. 2004b. Ichnofabrics and sedimentary facies of a tide-dominated delta: Jurassic Ile Formation of Kristin Field, Haltenbanken, offshore Mid-Norway. In: D. McIlroy (Ed.), The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society Special Publication, 228, 237-272.Google Scholar

  • McIlroy, D. 2007. Ichnology of a macrotidal tide-dominated deltaic depositional system: Lajas Formation, Neuquen Province, Argentina. In: R.G. Bromley, L.A. Buatois, G. Mangano, J.F. Genise and R.N. Google Scholar

  • Melchor (Eds), Sedimentorganisms interactions: A multifaceted ichnology. SEPM Special Publication, 88, 195-211.Google Scholar

  • Melchor, R.N., Cardonatto, M.C. and Visconti G. 2012a.Palaeoenvironmental and palaeoecological significance of flamingo-like footprints in shallow-lacustrine rocks: An example from the Oligocene-Miocene Vinchina Formation, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 315-316, 181-198.Google Scholar

  • Melchor, R.N., Genise, J.F., Buatois, L.A. and Umazano, A.M. 2012b. Fluvial environments. In: D. Knaust and R.G. Bromley (Eds), Trace fossils as indicators of sedimentary environments, Developments in Sedimentology, 64, 329-378.Google Scholar

  • Metz, R. 2002. Nonmarine Cretaceous Protovirgularia: possible dragonfly larva tracemaker. Short communication.Ichnos, 9, 75-76.Google Scholar

  • Metz, R. 2009. Trace fossils from the Mahantango Formation (Upper Middle Devonian) Pike County, Pennsylvania.Bulletin of the New Jersey Academy of Science, 54, 9-17.Google Scholar

  • Mikulaš, R. 2000. Trace fossils from the Cambrian of the Barandian area. Czech Geological Survey, Special Papers, 12, 1-29.Google Scholar

  • Mikulaš, R. 2006. Ichnofabric and substrate consistency in Upper Turonian carbonates of the Bohemian Cretaceous Basin (Czech Republic). Geologia Carpathica, 57, 79-90.Google Scholar

  • Mikulaš, R. and Martinek, K. 2006. Ichnology of the non-ma- rine deposits of the Boskovice Basin (Carboniferous-Permian, Czech Republic). Bulletin of Geosciences, 81, 81-91.CrossrefGoogle Scholar

  • Mikulaš, R., Fatka, O. and Szabad M. 2012. Paleoecologic implications of ichnofossils associated with slightly skeletonized body fossils, Middle Cambrian of the Barrandian Area, Czech Republic. Ichnos, 19, 199-210.CrossrefGoogle Scholar

  • Mikulaš, R., Mešķis, S., Ivanov, A., Lukševičs, E., Zupiņš, I, Stinkulis, Ģ., 2013. A rich ichnofossil assemblage from the Frasnian (Upper Devonian) deposits at Andoma Hill, Onega Lake, Russia. Bulletin of Geosciences, 88, 389-400.CrossrefGoogle Scholar

  • Mikulaš, R., Žitt, J. and Nekovařik, C. 2003. The ichnogenus Gastrochaenolites and its tracemakers from firmgrounds of the Bohemian Cretaceous Basin (Czech Republic).Ichnos, 10, 15-23.CrossrefGoogle Scholar

  • Milewicz, J. 1985. Propozycja formalnego podziału stratygraficznego utworow wypełniajacych depresję połnocnosudecką.Przegląd Geologiczny, 33, 385-390.Google Scholar

  • Miller W., III, 2001. Thalassinoides-Phycodes compound burrow systems in Paleocene deep-water limestone, Southern Alps of Italy. Palaeogeography, Palaeoclimatology, Palaeecology, 170, 149-156.CrossrefGoogle Scholar

  • Miller, W., III, 2007. Trace fossils. Concepts, problems, prospects. Elsevier Sciences Geology Department Humboldt State University Arcata, CA, USA, 1-611. Elsevier; Arcata.Google Scholar

  • Miller, M.F. and Byers, C.W. 1984. Abundant and diverse early Paleozoic infauna indicated by the stratigraphic record. Geology, 12, 40-43.CrossrefGoogle Scholar

  • Miller, M.F. and Knox, L.W. 1985. Biogenic structures and depositional environments of a Lower Pennsylvanian coalbearing sequence, northern Cumberland Plateau, Tennessee, U.S.A. In: H.A. Curran (Ed.), Biogenic structures: their use in interpreting depositional environments. SEPM, Special Publication, 35, 67-97.Google Scholar

  • Mohseni, H., Behbahani, R., Khodabakhsh, S. and Atashmard, Z. 2011. Depositional environments and trace fossil assemblages in the Pabdeh Formation (Paleogene), Zagros Basin, Iran. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 262, 59-77.Google Scholar

  • Monaco, P. and Giannetti, A. 2002. Three-dimensional burrow systems and taphofacies in shallowing-upward parasequences, Lower Jurassic carbonate platform (Calcan Grigi, Southern Alps, Italy). Facies, 47, 57-82.CrossrefGoogle Scholar

  • Monaco, P., Rodriguez-Tovar, F.J. and Uchman, A. 2012. Ichnological analysis of lateral environmental heterogeneity within the Bonarelli Level (uppermost Cenomanian) in the classical localities near Gubbio, central Apennines, Italy.Palaios, 27, 48-54.CrossrefGoogle Scholar

  • Mørk, A. and Bromley, R. G. 2008. Ichnology of a marine regressive systems tract; the Middle Triassic of Svalbard.Polar Research, 27, 339-359.CrossrefGoogle Scholar

  • Morrisey, R.G., Campbell, K.A., Zuraida, R. and Martin, A.J.2006. Plant traces resembling Skolithos. Ichnos, 13, 205-216.Google Scholar

  • Morrisey, L.B., Hillier, R.D. and Marriott, S.B. 2012. Late Silurian and Early Devonian terrestrialisation: Ichnological insights from the Lower Old Red Sandstone of the Anglo- Welsh Basin, U.K. Palaeogeography, Palaeoclimatology, Palaeoecology, 337-338, 194-215.Google Scholar

  • Myrow, P.M. 1995. Thalassinoides and the enigma of Early Paleozoic open-framework burrow systems. Palaios, 10, 58-74.CrossrefGoogle Scholar

  • Nagel, S., Castelltort, S., Wetzel, A., Willett, S.D., Mouthereau and Lin, A.T. 2013. Sedimentology and foreoland basin paleogeography during Taiwan arc continent collision.Journal of Asian Earth Sciences, 62, 180-204.CrossrefGoogle Scholar

  • Nara, M. and Ikari, Y. 2011. “Deep-sea bivalvian highways”: An ethological interpretation of branched Protovirgularia of the Palaeogene Muroto-Hanto Group, southwestern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology , 305, 250-255.Google Scholar

  • Narkiewicz, K. and Szulc, J. 2004. Controls on migration of conodont fauna in peripheral oceanic areas. An example from the Middle Triassic of the Northern Peri-Tethys.Geobios, 37, 425-436.CrossrefGoogle Scholar

  • Narrbone, G.M. 1984. Trace fossil in Upper Silurian flat to basin slope carbonates of Arctic Canada. Journal of Paleontology , 58, 398-415.Google Scholar

  • Nawrocki, J. and Szulc, J. 2000. Magnetic polarity scale for the Roetian and Muschelkalk deposits from Silesia and northern part of the Holy Cross Mts. (Poland). Przegląd Geologiczny, 48, 236-238. [In Polish, summary in English] Google Scholar

  • Nesbitt, E.A. and Campbell, K.A. 2002. A new Psilonichnus ichnospecies attributed to mud-shrimp Upogebia in estuarine settings. Journal of Paleontology, 76, 982-901.Google Scholar

  • Netto, R.G. 2007. Skolithos-dominated piperock In nonmarine environments. An example from the Triassic Caturrita Formation, Southern Brazil. In: R.G. Bromley, L.A. Buatois, G. Mangano, J.F. Genise and R.N. Melchor (Eds), Sediment-organisms interactions: A multifaceted ichnology.SEPM Special Publication, 88, 109-121.Google Scholar

  • Niedźwiedzki, R. 1999. Ichnofosylia dolnego wapienia muszlowego.In: R.K. Borowka (Ed.), Problemy geologii, hydrogeologii i ochrony środowiska wybrzeża morskiego Pomorza Zachodniego. Sesja referatowa i konferencje terenowe. LXX Zjazd Naukowy PTG, pp. 297-298, Szczecin.Google Scholar

  • Niedźwiedzki, R. and Salamon, M. 2002. Migration router of the Tethyan fauna in the eastern part of the epicontinental Germanic Basin (Poland). Freiberger Forschungshefte, C 497, 1-8.Google Scholar

  • Niedźwiedzki, R., Salamon, M. and Wolkenstein, K. 2011. Encrinus aculeatus (Crinoidea: Encrinida) with exceptional preservation of organic pigments from the Middle Triassic of Lower Silesia (SW Poland). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 262, 163-170.Google Scholar

  • Ogg, J.G. 2012. Triassic. In: F.M. Gradstein, J.G. Ogg, M.D.Schmitz and G.M. Ogg (Eds), The Geologic Time Scale 2012, 2, pp. 681-730.Google Scholar

  • Olivero, E.B. 2012. Sedimentary cycles, ammonite diversity and palaeoenvironmental changes in the Upper Cretaceous Marambio Group, Antarctica. Cretaceous Research, 34, 348-366.CrossrefGoogle Scholar

  • Olivero, E.B. and Cabrera, M.I.L. 2013. Euflabella n. igen.: complex horizontal spreite burrows in Upper Cretaceous- Paleogene shallow-marine sandstones of Antarctica and Tierra del Fuego. Journal of Paleontology, 87, 413-426.CrossrefGoogle Scholar

  • Olóriz, F. and Rodriguez-Tovar, F.J. 2002. Trace fossils and minor discontinuities in a marl limestone rhythmite, Lower-Middle Kimmeridgian, southern Spain. Geobios, 35, 581-593. CrossrefGoogle Scholar

  • Palmer, T.J. 1978. Burrows at certain omission surfaces in the Middle Ordovician of the Upper Mississippi Valley. Journal of Paleontology, 52, 109-117.Google Scholar

  • Pazos, P.J., di Pasquo M. and Amenabar C.R. 2007. Trace fossils of the glacial to postglacial transition in the El Imperial Formation (Upper Carboniferous) San Rafael Basin, Argentina. In: R.G. Bromey, L.A. Butois, G. Mangano, J.F. Genise and R.N. Melchor (Eds), Sediment-organisms interactions: A multifaceted ichnology. SEPM Special Publication, 88, 137-147.Google Scholar

  • Pearson, N.J., Mangano, M.G., Buatois, L.A., Casadio, S. and Raising, M.R. 2012. Ichnology, sedimentology, and sequence stratigraphy of outer-estuarine and coastal-plain deposits: Implications for the distinction between allogenic and autogenic expressions of the Glossifungites Ichnofacies. Palaeogeography, Palaeoclimatology, Palaeoecology, 333, 192-217.Google Scholar

  • Pearson, N.J., Mangano, M.G., Buatois, L., Casadio, S. and Raising, M.R. 2013. Environmental variability of Macaronichnus ichnofabrics in Eocene tidal-embayment deposits of southern Patagonia, Argentina. Lethaia, 46, 341-354.CrossrefGoogle Scholar

  • Pemberton, S.G. and Frey, R.W. 1982. Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. Journal of Paleontology, 56, 843-881.Google Scholar

  • Pemberton, S.G. and Frey, R.W. 1985. The Glossifungites ichnofacies: modern examples from the Georgia Coast, U.S.A. In: H.A. Curran (Ed.), Biogenic structures: their use in interpreting depositional environments. SEPM, Special Publication, 35, 237-259.Google Scholar

  • Pemberton, S.G. and Jones, B. 1988. Ichnology of the Pleistocene Ironshore Formation, Grand Cayman Island, British West Indies. Journal of Paleontology, 62, 495-505.Google Scholar

  • Pemberton, S.G., Frey, R.W. and Walker, R.G. 1984. Probable lobster burrows in the Cardium Formation (Upper Cretaceous) of southern Alberta, Canada, and comments on modern burrowing decapods. Journal of Paleontology, 58, 1422-1435.Google Scholar

  • Pemberton, S.G., MacEachern J.A. and Sauders T. 2004.Stratigraphic applications of substrate-specific ichnofacies: delineating discontinuities in the rock record. In: D.McIlroy (Ed.), The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society, Special Publication, 228, 29-62.Google Scholar

  • Pemberton, S.G., MacEachern, J.A., Dashtgard, S.E., Bann, K.L., Gingras, M.K. and Zonneveld, J.-P. 2012.Shorefaces. In: D.Knaust and R.G. Bromley (Eds), Trace fossils as indicators of sedimentary environments, Developments in Sedimentology, 64, 563-603.Google Scholar

  • Pemberton, S.G., Spila, M., Pulham, A.J., Saunders, T., MacEachern, J.A., Robbins, D. and Sinclair, I.K. 2001.Ichnology and sedimentology of shallow to marginal marine systems. Ben Nevis & Avalon Reservoirs, Jeanne d’Arc Basin. Geological Association of Canada, Short Course Notes, 15, 1-343.Google Scholar

  • Peng, S., Babcock, L.E. and Cooper, R.A. 2012. The Cambrian period. In: F.M. Gradstein, J.G. Ogg, M.D., Schmitz and G.M. Ogg (Eds), The geologic time scale 2012, 2, pp. 437-488.Google Scholar

  • Pérez-Lopéz, A. 2001. Significance of pot and gutter casts in a Middle Triassic carbonate platform, Betic Cordillera, southern Spain. Sedimentology, 48, 1371-1388.Google Scholar

  • Pérez-Lopéz, A. and Perez-Valera, F. 2012. Tempestite facies models for the epicontinental Triassic carbonates of the Betic Cordillera (southern Spain). Sedimentology, 59: 646-678.CrossrefGoogle Scholar

  • Pérez-Valera, F. and Perez-Lopez, A. 2008. Stratigraphy and sedimentology of Muschelkalk carbonates of the Southern Iberian Continental Palaeomargin (Siles and Cehegin Formations, Southern Spain). Facies, 54, 61-87.CrossrefGoogle Scholar

  • Perry, Ch.T. and Smithers, S.G. 2006. Taphonomic signatures of turbid-zone reef development: Examples from Paluma Shoals and Lugger Shoal, inshore central Great Barrier Reef, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 242, 1-20.Google Scholar

  • Pervesler, P. and Uchman, A. 2009. A new Y-shaped trace fossil attributed to upogebiid crustaceans from Early Pleistocene of Italy. Acta Palaeontologica Polonica, 54, 135-142.CrossrefGoogle Scholar

  • Pervesler, P., Uchman, A., Hohenegger J. and Dominici, S.2011. Ichnological record of environmental changes in Early Quaternary (Gelasian-Calabrian) marine deposits of the Stirone Section, Northern Italy. Palaios, 26, 578-593.CrossrefGoogle Scholar

  • Phillips, Ch., McIlroy, D. and Elliott, T. 2011. Ichnological characterization of Eocene/Oligocene turbidites from the Gres d’Annet Basin, French Alps, SE France. Palaeo- geography, Palaeoclimatology, Palaeoecology, 300, 67-83.Google Scholar

  • Pickerill, R.K., Fillion, D. and Harland, T.L. 1984. Middle Ordovician trace fossils in carbonates of the Trenton Group between Montreal and Quebec City, St. Lawrence Lowland, Eastern Canada. Journal of Paleontology, 58, 416-439.Google Scholar

  • Pleydell, S.M. and Jones, B. 1988. Boring of various faunal elements in the Oligocene-Miocene Bluff Formation of Grand Cayman, British West Indies. Journal of Paleontology , 62, 348-367.Google Scholar

  • Pollard, J.E. 1981. A comparison between the Triassic tracefossils of Cheshire and south Germany. Palaeontology, 24, 555-588.Google Scholar

  • Poursoltani, M.R., Moussavi-Harami, R. and Gibling, M.R.2007. Jurassic deep-water fans in the Neo-Tethys Ocean: The Kashafrud Formation of the Kopet-Dagh Basin, Iran.Sedimentary Geology, 198, 53-74.Google Scholar

  • Pruss, S.B. and Bottjer, D.J. 2004. Early Triassic trace fossils of the Western United States and their implications for prolonged environmental stress from the End-Permian mass extinction. Palaios, 19, 551-564.CrossrefGoogle Scholar

  • Radley, J.D. and Barker, M.J. 1998. Palaeoenvironmental analysis of shell beds in the Wealden Group (Lower Cretaceous) of the Isle of Wight, southern England: an initial account. Cretaceous Research, 19, 489-504.CrossrefGoogle Scholar

  • Radley, J.D., Barker, M.J. and Munt, M.C. 1998. Bivalve trace fossils (Lockeia) from the Barnes High Sandstone (Wealden Group, Lower Cretaceous) of the Wessex Sub-basin, southern England. Cretaceous Research, 19, 505-509.CrossrefGoogle Scholar

  • Richter, R. 1937. Marken und Spuren aus alten Zeiten I-II.Senckenbergiana, 19, 150-178.Google Scholar

  • Rieth, A. 1932. Neue Funde spongeliomorpher Fucoiden aus dem Jura Schwabens. Geologische Paläontologische Abhandlungen, Neue Folge, 19, 257-294.Google Scholar

  • Rindsberg, A.K. 2012. Ichnotaxonomy: finding patterns in a welter of information. In: D. Knaust and R.G. Bromley (Eds), Trace fossils as indicators of sedimentary environments, Developments in Sedimentology, 64, 45-78.Google Scholar

  • Rodríguez-Tovar, F.J. and Pérez-Valera, F. 2008. Trace fossil Rhizocorallium from the Middle Triassic of the Betic Cordillera, Southern Spain: characterization and environmental implications. Palaios, 23, 78-86.CrossrefGoogle Scholar

  • Rodríguez-Tovar, F.J. and Pérez-Valera, F. 2013. Variations in population structure of Diplocraterion parallelum: Hydrodynamic influence, food availability, or nursery settlement? Palaeogeography, Palaeoclimatology, Palaeoecology , 369, 501-509.Google Scholar

  • Rodríguez-Tovar, F.J. and Uchman, A. 2004. Ichnotaxonomic analysis of the Cretaceous/Palaeogene boundary interval in the Agost section, south-east Spain. Cretaceous Research , 25, 635-647.CrossrefGoogle Scholar

  • Rodríguez-Tovar, F.J. and Uchman, A. 2006. Ichnological analysis of the Cretaceous-Palaeogene boundary interval at the Caravaca section, SE Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 242, 313-325.Google Scholar

  • Rodríguez-Tovar, F.J. and Uchman, A. 2010. Ichnofabric evidence for the lack of bottom anoxia during the Lower Toarcian Oceanic Anoxic Event in the Fuente de la Vidriera Section, Betic Cordillera, Spain. Palaios, 25, 576-587.CrossrefGoogle Scholar

  • Rodríguez-Tovar, F.J., Buatois, L.A., Pinuela, L., Mangano, M.G. and Garcia-Ramos, J.C. 2012. Palaeoenvironmental and functional interpretation of Rhizocorallium jenense spinosus (ichnosubsp. nov.) from the lower Jurassic of Asturias, northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 339-341, 114-120.Google Scholar

  • Rodríguez-Tovar, F.J., Orue-Etxebaria, X., Apellaniz, E. And Molina, E. 2010. Sea-level dynamics and palaeoecological factors affecting trace fossil distribution in Eocene turbiditic deposits (Gorrondatxe section, N Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 285, 50-65.Google Scholar

  • Rodríguez-Tovar, F.J., Perez-Valera, F. and Perez-Lopez, A.2007. Ichnological analysis in high-resolution sequence stratigraphy: The Glossifungites ichnofacies in Triassic successions from the Betic Cordillera (southern Spain).Sedimentary Geology, 198, 293-307.Google Scholar

  • Rodríguez-Tovar, F.J., Uchman, A., Martin-Algarra, A. 2009a.Oceanic Anoxic Event at the Cenomanian-Turonian boundary interval (OAE-2): ichnological approach from the Betic Cordillera, southern Spain. Lethaia, 42, 407-417.CrossrefGoogle Scholar

  • Rodríguez-Tovar, F.J. and Uchman, A., Martin-Algarra, A. and O’Dogherty, L. 2009b. Nutrient spatial variation during intrabasinal upwelling at the Cenomanian-Turonian Oceanic Anoxic Event in the westernmost Tethys; An ichnological and facies approach. Sedimentary Geology, 215, 83-93.Google Scholar

  • Rodríguez-Tovar, F.J., Uchman, A., Alegert, L. and Molina, E. 2011a. Impact of the Paleocene-Eocene Thermal Maximum on the macrobenthic community: Ichnological record from the Zumaia section, northern Spain. Marine Geology, 282, 178-187.CrossrefGoogle Scholar

  • Rodríguez-Tovar, F.J., Uchman, A., Molina, E. and Monechi, S. 2011b. Bioturbational redistribution of Danian calcareous nannofossils in the uppermost Maastrichtian across the K-Pg boundary at Bidart, SW France. Geobios, 43, 569-579.Google Scholar

  • Rodríguez-Tovar, F.J., Uchman, A., Orue-Etxebarria, X., Apellaniz, E. and Baceta, J. 2011c. Ichnological analysis of the Bidart and Sopelana Cretaceous/Paleogene (K/Pg) boundary sections (Basque Basin, W Pyrenees: Refining ecosedimentary environment. Sedimentary Geology, 234, 42-55.Google Scholar

  • Rossetti, D.F. and Netto, R.G. 2006. First evidence of marine influence in the Cretaceous of the Amazonas Basin, Brazil.Cretaceous Research, 27, 513-528.CrossrefGoogle Scholar

  • Rossetti, D.F., Bezerra, F.H.R. and Dominguez, J.M.L. 2013.Late Oligocene-Miocene transgressions along the equatorial and eastern margins of Brazil. Earth-Science Reviews , 123, 87-112.Google Scholar

  • Ruffell, A. and Wach, G. 1998. Firmgrounds - key surfaces in the recognition of parasequences in the Aptian Lower Greensand Group, Isle of Wight (southern England). Sedimentology , 45, 91-107.CrossrefGoogle Scholar

  • Salamon, M., Niedźwiedzki, R. and Walter, R. 2003. New data on Middle Triassic echinoderms from the Sudetes Mountains.Geological Quarterly, 47, 133-138.Google Scholar

  • Santos, A., Mayoral, E., da Silva, C. M., Cachao, M. And Kullberg, J. C. 2010. Trypanites ichnofacies: Palaeoenvironmental and tectonic implications. A case study from the Miocene disconformity at Foz da Fonte (Lower Tagus Basin, Portugal). Palaeogeography, Palaeoclimatology, Palaeoecology, 292, 35-43.Google Scholar

  • Santos, A., Mayoral, E.J., da Silva, C. M., Cachao, M., Johnson, M.E. and Baarli, B.G. 2011. Miocene intertidal zonation on a volcanically active shoreline: Porto Santo in the Madeira Archipelago, Portugal. Lethaia, 44, 26-32.CrossrefGoogle Scholar

  • Sarkar, S., Ghosh, S. K. and Chakraborty, C. 2009. Ichnology of a Late Palaeozoic ice-marginal shallow marine succession: Talchir Formation, Satpura Gondwana basin, central India. Palaeogeography, Palaeoclimatology, Palaeoecology, 283, 28-45.Google Scholar

  • Savrda, C.E. 1991. Ichnology in sequence stratigraphic studies: an example from the Lower Paleocene of Alabama.Palaios, 6, 39-53.CrossrefGoogle Scholar

  • Savrda, C.E. 1995. Ichnologic applications in paleoceanographic, paleoclimatic, and sea-level studies. Palaios, 10, 565-577.CrossrefGoogle Scholar

  • Savrda, C.E. 2007. Trace fossils and marine benthic oxygenation.In: W. Miller, III (Ed.), Trace Fossils. Concepts, Problems, Prospects, 149-158. Elsevier.Google Scholar

  • Savrda, C.E. and Bottjer, D.J. 1986. Trace fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology , 14, 3-6.CrossrefGoogle Scholar

  • Savrda, C.E., Browning, J.V., Krawinkel, H. and Hesselbo, S.P. 2001. Firmground ichnofabrics in deep-water sequence stratigraphy, Tertiary clinoform-toe deposits, New Jersey Slope. Palaios, 16, 294-305.CrossrefGoogle Scholar

  • Sawicki, L. and Teisseyre, H. 1978. Geologic Map of the Lower Silesian Region (without Quaternary sediments).PAN; Warszawa.Google Scholar

  • Schlirf, M. 2003. Palaeoecologic significance of Late Jurassic trace fossils from the Boulonnais, N France. Acta Geologica Polonica, 53, 123-142.Google Scholar

  • Schlirf, M. 2011. A new classification concept for U-shaped spreite trace fossils. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 260, 33-54.Google Scholar

  • Schlirf, M. and Uchman, A. 2005. Revision of the ichnogenus Sabellarifex Richter, 1921 and its relationship to Skolithos Haldeman, 1840 and Polykladichnus Fursich, 198. Journal of Systematic Palaeontology, 3, 5-131.Google Scholar

  • Schmid, E.E. 1876. Der Muschelkalk des ostlichen Thuringen, pp. 1-20. Fromann; Jena.Google Scholar

  • Scott, J.J., Buatois, L.A. and Mangano, M.G. 2012. Lacustrine environments. In: D. Knaust and R.G. Bromley (Eds), Trace fossils as indicators of sedimentary environments.Developments in Sedimentology, 64, 379-417.Google Scholar

  • Seilacher, A. 1967. Bathymetry of trace fossils. Marine Geology , 5, 413-428.CrossrefGoogle Scholar

  • Seilacher, A., 2007. Trace fossil analysis, 1-226. Springer-Verlag; Berlin-Heilderberg-New York.Google Scholar

  • Seilacher, A. and Seilacher, E. 1994. Bivalvian trace fossils: a lesson from actuopaleontology. Courier Forschung Senckenberg, 169, 5-15.Google Scholar

  • Sheehan, P.M. and Schiefelbein, D.R.J. 1984. The trace-fossil Thalassinoides from the Upper Ordovician of the Eastern Great basin: deep burrowing in the Early Paleozoic.Journal of Paleontology, 58, 440-447.Google Scholar

  • Singh, R.H., Rodriguez-Tovar, F.J. and Ibotombi, S. 2008.Trace Fossils of the Upper Eocene-Lower Oligocene Transition of the Manipur, Indo-Myanmar Ranges (Northeast India). Turkish Journal of Earth Sciences, 17, 821-834.Google Scholar

  • Szulc, J. 1990a. The Anisian transgression - regression cycles.In: A. Bodzioch, S. Kwiatkowski, M. Michalik, E.Morycowa and J. Szulc (Eds), International Workshop - Field Seminar. The Muschelkalk - Sedimentary Environments, Facies and Diagenesis, pp. 4-13. Krakow.Google Scholar

  • Szulc, J. 1990 b. Ichnological indicators of the sedimentary environment fluctuation. In: A. Bodzioch, S. Kwiatkowski, M. Michalik, E. Morycowa, and J. Szulc (Eds), International Workshop - Field Seminar. The Muschelkalk - Sedimentary Environments, Facies and Diagenesis, pp. 23-25. Krakow.Google Scholar

  • Szulc, J. 1991a. The Muschelkalk in Lower Silesia. Stop B11, Raciborowice (Poland, Lower Silesia). In: H. Hagdorn, T.Google Scholar

  • Simon and J. Szulc (Eds), Muschelkalk. A Field Guide, pp. 58-61. Goldschneck-Verlag; Stuttgart.Google Scholar

  • Szulc, J. 1991b. Stop B13, Strzelce Opolskie (Poland, Upper Silesia). In: H. Hagdorn, T. Simon and J. Szulc (Eds), Muschelkalk. A Field Guide, pp. 67-69. Goldschneck-Verlag; Stuttgart.Google Scholar

  • Szulc, J. 1993. Early Alpine Tectonics and Lithofacies Succession in the Silesian Part of the Muschelkalk Basin. A Synopsis. In: H. Hagdorn and A. Seilacher (Eds), Muschelkalk. Schontaler Symposium 1991. Sonderbande der Gesellschaft fur Natur-Kunde Wurttemberg, 2, pp. 19-28. Goldschneck-Verlag; Stuttgart.Google Scholar

  • Szulc, J. 2000. Middle Triassic evolution of the northern Peri- Tethys area as influenced by early opening of the Tethys Ocean. Annales Societatis Geologorum Poloniae, 70, 1-48.Google Scholar

  • Szulc, J. 2007a. Structural setting of the Germanic Triassic and problems with its stratigraphical setup. A preface. In: J.Google Scholar

  • Szulc and A. Becker (Eds), International Workshop on the Triassic of southern Poland. Pan-European Correlation of the Epicontinental Triassic 4 th Meeting. Fieldtrip Guide, 3-8.09, pp. 5-6. Krakow.Google Scholar

  • Szulc, J. 2007b. Rot and Muschelkalk. In: J. Szulc and A.Google Scholar

  • Becker (Eds), International Workshop on the Triassic of southern Poland. Pan-European Correlation of the Epicontinental Triassic 4 th Meeting. Fieldtrip Guide, 3-8.09, pp. 17-41. Krakow.Google Scholar

  • Szulc, J. and Głuchowski, E. 1991. Stop B15, Zyglin (Poland, Upper Silesia). In: H. Hagdorn, T. Simon and J. Szulc (Eds), Muschelkalk. A Field Guide, pp. 71-72. Goldschneck- Verlag; Stuttgart.Google Scholar

  • Szulc, J., Hagdorn, H. and Matysik, M., 2009. Shallow marine carbonate sedimentation in tectonically mobile basin-the Muschelkalk of Silesia (Excursion B1). In: G. Haczewski (Ed.), Abstracts and field guide. 6 th Annual Conference of SEPM-CES, SEDIMENT 2009, Krakow, 24-25 June, Polish Geological Institute, pp. 82-110. Warszawa.Google Scholar

  • Szurlies, M. 2007. Latest Permian to Middle Triassic cycolmagnetostratigraphy from the Central European Basin, Germany: Implications for the geomagnetic polarity timescale. Earth and Planetary Science Letters, 261, 602-619.Google Scholar

  • Śliwiński, W., Raczyński and Wojewoda, J. 2003. Sedimentation of the epi-Variscian cover in the North-Sudetic Basin. In: W. Ciężkowski, J. Wojewoda and A. Żelaźniewicz (Eds), Sudety Zachodnie: od wendu do czwartorzędu. Polskie Towarzystwo Geologiczne, pp. 119-126. Wrocław. [In Polish] Google Scholar

  • Taylor, A.M. and Goldring, R. 1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, London, 150, 141-148 CrossrefGoogle Scholar

  • Tchoumatchenco, P. and Uchman, A. 1999. Lower and Middle Jurassic flysch trace fossils from the eastern Stara Planina Mountains, Bulgaria: A contribution to the evolution of Mesozoic ichnodiversity. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 213, 169-199. Google Scholar

  • Treter, M. 2003. Środowisko facji dolnego wapienia muszlowego w Sudetach w oparciu o ichnofosylia i makrofaunę, pp. 1-76. Uniwersytet Wrocławski; Wrocław. [In Polish; unpublished report] Google Scholar

  • Tucker, M.E. and Wright, V.P. 1990. Carbonate sedimentology, pp. 1-482. Blackwell Science; Oxford-London-Edinburgh- Paris-Victoria-Carlton-Malden.Google Scholar

  • Uchman A. 1991. “Shallow water” trace fossils in Paleogene flysch of the southern part of the Magura Nappe, Polish Outer Carpathians. Annales Societatis Geologorum Poloniae , 61, 61-75.Google Scholar

  • Uchman, A. 1995. Tiering patterns of trace fossils in the Palaeogene flysch deposits of the Carpathians, Poland.Geobios, 28, 389-394.CrossrefGoogle Scholar

  • Uchman, A. 1998. Taxonomy and ethology of flysch trace fossils: revision of the Marian Książkiewicz Collection and studies of complementary material. Annales Societatis Geologorum Poloniae, 68, 105-218.Google Scholar

  • Uchman, A. 2004. Deep-sea trace fossils controlled by palaeooxygenation and deposition: an example from the Lower Cretaceous dark flysch deposits of the Silesian unit, Carpathians, Poland. Fossils and Strata, 51, 39-57.Google Scholar

  • Uchman, A. and Gaździcki, A. 2006. New trace fossils from the La Meseta Formation (Eocene) of Seymour Island, Antarctica. Polish Polar Research, 27, 153-170.Google Scholar

  • Uchman, A. and Krenmayr 2004. Trace fossils, ichnofabrics and sedimentary facies in the shallow marine Lower Miocene molasse of Upper Austria. Jahrbuch der Geologischen Bundesanstalt, 144, 233-251.Google Scholar

  • Uchman, A. and Kumpulainen, R.A. 2011. Trace fossils in Quaternary glacial varved clays near Uppsala, Sweden.Journal of the Geological Society of Sweden, 133, 135-140.Google Scholar

  • Uchman, A. and Rattazzi, B. 2011. The new complex helical trace fossil Avetoichnus lusae igen. n. et isp. n. from the Cainozoic deep-sea sediments of the Alpine realm: a nongraphoglyptid mid-tier agrichnion. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 260, 319-330.Google Scholar

  • Uchman, A. and Tchoumatchenco, P. 2003. A mixed assemblage of deep-sea and shelf trace fossils from the Lower Creatceous (Valanginian) Kamchia Formation in the Troyan region, central Fore-Balkan, Bulgaria. Annales Societatis Geologorum Poloniae, 73, 27-34.Google Scholar

  • Uchman, A., Bubniak, I. and Bubniak, A. 2000. The Glossifungites ichnofacies in the area of ist nomenclatural archetype, Lviv, Ukraine. Ichnos, 7, 183-193.CrossrefGoogle Scholar

  • Uchman, A., Drygant, D., Paszkowski, M., Porębski, SZ.J. and Turnau, E. 2004a. Early Devonian trace fossils in marine to non-marine redbeds in Podolia, Ukraine: palaeonvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 214, 67-83.Google Scholar

  • Uchman, A., Hanken, N.-M. and Binns, R. 2005. Ordovician bathyal trace fossils from metasiliciclastics in Central Norway and their sedimentological and paleogeographical implications. Ichnos, 12,105-133.CrossrefGoogle Scholar

  • Uchman, A., Janbu, N.E. and Nemec, W. 2004b. Trace Fossils in the Cretaceous-Eocene Flysch of the Sinop-Boyabat Basin, Central Pontides, Turkey. Annales Societatis Geologorum Poloniae, 74, 197-235.Google Scholar

  • Uchman, A., Mikulaš, R. and Rindsberg, A.K. 2011. Mollusc trace fossils Ptychoplasma Fenton and Fenton, 1937 and Oravaichnium Plička and Uhrova, 1990: their type material and ichnospecies. Geobios, 44, 387-397.Google Scholar

  • Vinn, O. 2004. The earliest known Trypanites borings in the shells of articulated brachiopods from the Arenig (Ordovician) of Baltica. Proceedings of the Estonian Academy of Sciences, Geology, 53, 257-266.Google Scholar

  • Vinn, O. and Wilson, M.A. 2010. Occurrence of giant borings of Osprioneides kampto in the Lower Silurian (Sheinwoodian) stromatoporoids of Saaremaa Estonia. Ichnos, 17, 166-171.CrossrefGoogle Scholar

  • Virtasalo, J.J., Bonsdorff, E., Moros, M., Kabel, K., Kotilainen, A.T., Ryabchuk, D., Kallonen, A. and Hamalainen, K. 2011. Ichnological trends along an open-water transect across a large marginal-marine epicontinental basin, the modern Baltic Sea. Sedimentary Geology, 241, 40-51.Google Scholar

  • Vlahowić, I., Mikša, G., Mrinjek, E., Hasiotis, S.T., Velić, I, Tišljar, J. and Matičec, D. 2011. Response of tracemakers to temporary platform drowning: Lower Cenomanian of southern Istria (Western Croatia). Palaios, 26, 567-577.CrossrefGoogle Scholar

  • Waite, R., Wetzel, A., Mwyer, C.a. and Strasser, A. 2008. The paleoecological significance of nerineoid mass accumulations from the Kimmeridgian of the Swiss Jura Mountains.Palaios, 23, 548-558.CrossrefGoogle Scholar

  • Waite, R., Marty, D., Strasser, A. and Wetzel, A. 2013. The lost paleosols: Masked evidence for emergence and soil formation on the Kimmeridgian Jura platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 376, 73-90.Google Scholar

  • Warme, J.E. 1975. Borings as trace fossils, and the processes of marine bioerosion. In R.W. Frey (Ed.), The Study of Trace Fossils, A synthesis of Principles, Problems, and Procedures in Ichnology, pp. 181-227.Google Scholar

  • Wendland, F. 1980. Zur Feinstratigraphie des Unteren Muschelkalks in der thuringischen Vorderrhon (Bezirk Suhl, DDR), Zeitschrift für Geologische Wissenschaften, 8, 1057-1078.Google Scholar

  • Wetzel, A. and Uchman, A. 1997. Ichnology of deep-sea fan overbank deposits of the Ganei Slates (Eocene, Switzerland) - a classical flysch trace fossil locality studied first by Oswald Heer. (Overseas Publishers Association) Amsterdam Published in the Netherlands by Harwood Academic Publishers, Ichnos, 5, 139-162.Google Scholar

  • Wetzel, A. and Uchman, A. 1998a. Biogenic Sedimentary Structures in Mudstones an Overview. In: J. Schiber, W.Zimmerle and P. Sethi (Eds), Shales and Mudstones I, pp. 351-369. E. Schweizerbart’sche Verlagsbuchhandlung (Nagele u. Obermiller); Stuttgart.Google Scholar

  • Wetzel, A. and Uchman, A. 1998 b. Deep-sea benthic food content recorded by ichnofabrics: a conceptual model based on observations from Paleogene flysch, Carpathians, Poland. Palaios, 13, 533-546.CrossrefGoogle Scholar

  • Wetzel, A. and Uchman, A. 2001. Sequential colonization of muddy turbidites in the Eocene Beloveza Formation, Carpathians, Poland. Palaeogeography, Palaeoclimatology , Palaeoecology, 168, 171-186.Google Scholar

  • Wetzel, A., Blechschmidt, I., Uchman, A. and Matter, A.2007. A highly diverse ichnofauna in Late Triassic deepsea fan deposits of Oman. Palaios, 22, 567-576.CrossrefGoogle Scholar

  • Wiedl, T., Harzhauser M. and Piller, W.E. 2012. Facies and synsedimentary tectonics on a Badenian carbonate platform in the southern Vienna Basin (Austria, Central Paratethys). Facies, 58, 523-548.CrossrefGoogle Scholar

  • Wiedl, T., Harzhauser, M., Kroh, A., Ćorić, S. and Piller, W.E.2013. Ecospace variability along a carbonate platform at the northern boundary of the Miocene reef belt (upper Langhian, Austria). Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 232-246.Google Scholar

  • Wignall, P.B. 1991. Dysaerobic trace fossils and ichnofabrics in the Upper Jurassic Kimmeridge clay of southern England.Palaios, 6, 264-270.CrossrefGoogle Scholar

  • Wilson, J.L. 1975. Carbonate facies in geologic history, 1-471.Springer-Verlag.Google Scholar

  • Wilson, M.A. and Palmer, T.J. 1998. The earliest Gastrochaenolites (Early Pennsylvanian, Arkansas, USA): An Upper Paleozoic bivalve boring? Journal of Paleontology , 72, 769-772.Google Scholar

  • Wilson, M.A., Wolfe, K.R. and Avni, Y. 2005. Development of a Jurassic rocky shore complex (Zahar Formation, Makhtesh Qatan, southern Israel). Israel Journal of Earth Sciences, 54, 171-178.CrossrefGoogle Scholar

  • Wilson, M.A., Feldman, H.R., Bowen, J.C. and Avni, Y. 2008.A new equatorial, very shallow marine sclerozoan fauna from the Middle Jurassic (late Callovian) of southern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology , 263, 24-29.Google Scholar

  • Wilson, M.A. and Taylor, P.D. 2001. Palaeoecology of hard substrate faunas from the Cretaceous Qahlah Formation of the Oman Mountains. Palaeontology, 44, 21-41.CrossrefGoogle Scholar

  • Wincierz, J. 1973. Kustensedimente und Ichnofauna aus dem oberen Hettangium von Mackendorf (Niedersachsen) - summary in English. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 144, 104-141.Google Scholar

  • Worsley, D. and Mork, A. 2001. The environmental significance of the trace fossil Rhizocorallium jenense in the Lower Triassic of western Spitsbergen. Polar Research, 20, 37-48.CrossrefGoogle Scholar

  • Zenker, J.C. 1836. Historisch-topografisches Taschenbuch von Jena und seiner Umgebung besonders in seiner naturwissen- schaftlicher und medicinischer Beziehung. 1-338.J.C. Zenker; Jena.Google Scholar

  • Zhang, G., Uchman, A., Chodyń, R. and Bromley, R.G. 2008. Trace fossil Artichnus pholeoides igen. nov. isp. nov. in Eocene turbidites, Polish Carpathians: possible ascription to holothurians. Acta Geologica Polonica, 58, 75-86.Google Scholar

  • Zonneveld, J.-P. and Gingras, M.K. 2013. The ichnotaxonomy of vertical oriented, bivalve-generated equilibrichnia.Journal of Paleontology, 87, 243-253.CrossrefGoogle Scholar

  • Zonneveld, J.-P., Gingras, M. K. and Beatty, T. W. 2010. Diverse ichnofossil assemblages following the P-T mass extinction, Lower Triassic, Alberta and British Columbia, Canada: Evidence for shallow marine refugia on the northwestern coast of Pangaea. Palaios, 25, 368-392.CrossrefGoogle Scholar

  • Zonneveld, J.-P., Zaim, Y., Rizal, Y., Ciochon, R.L., Bettis III, E.A., Aswan, Gunnell, G.F. 2012. Ichnological constraints on the depositional environment of the Sawahlunto Formation, Kandi, northwest Ombilin Basin, west Sumatra, Indonesia. Journal of Asian Earth Sciences, 45, 106-113.CrossrefGoogle Scholar

  • Żelaźniewicz, A. and Aleksandrowski, P. 2008. Tectonic subdivision of Poland: southwestern Poland. Przegląd Geologiczny , 56, 904-911. [In Polish with English summary] Žitt, J. and Mikulaš, R. 2006. Substrate of bivalve borers as recorded on phosphatic fills of Gastrochaenolites, palaeoenvironmental context (Bohemian Cretaceous Basin, Czech Republic). Ichnos, 13, 191-198. Google Scholar

About the article

Published Online: 2013-10-15

Published in Print: 2013-09-01


Citation Information: Acta Geologica Polonica, Volume 63, Issue 3, Pages 315–353n, ISSN (Print) 0001-5709, DOI: https://doi.org/10.2478/agp-2013-0015.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in