Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Geologica Polonica

The Journal of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.917
5-year IMPACT FACTOR: 1.418

CiteScore 2016: 1.15

SCImago Journal Rank (SJR) 2016: 0.507
Source Normalized Impact per Paper (SNIP) 2016: 0.755

Open Access
Online
ISSN
2300-1887
See all formats and pricing
More options …

An early Middle Anisian (Middle Triassic) Tubiphytes and cement crusts-dominated reef from North Dobrogea (Romania): facies, depositional environment and diagenesis

Livia Popa
  • Corresponding author
  • Department of Geology, Faculty of Geology and Geophysics, University of Bucharest, Bd. Bălcescu Nicolae 1, RO-010041 Bucharest, Romania
  • OMV Petrom S.A., Reservoir Management Department, Asset IV Moesia South, 22nd Coralilor Street, 013329, Bucharest, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cristina E. Panaiotu
  • Department of Mineralogy, Faculty of Geology and Geophysics, University of Bucharest, Bd. Bălcescu Nicolae 1, RO-010041 Bucharest, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eugen Grădinaru
  • Department of Geology, Faculty of Geology and Geophysics, University of Bucharest, Bd. Bălcescu Nicolae 1, RO-010041 Bucharest, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-02 | DOI: https://doi.org/10.2478/agp-2014-0011

Abstract

A well-developed Triassic carbonate platform is exposed in the eastern part of the Tulcea Unit, in the Cimmerian North Dobrogean Orogen, southeastern Romania. Facies analysis of the 200 m thick succession of lower Middle Anisian limestones exposed in a large limestone quarry south of the village of Mahmudia suggests a transition from upper slope towards toe-of-slope carbonate facies, reflecting sea-level fluctuations and tectonic tilting. The slope is dominated by in situ microbialites in the upper portion, consisting of reefal boundstone facies, and by molluscan coquina and cement boundstones. A key role is played by the cosmopolitan micro-encruster Tubiphytes, which became common in the aftermath of the mass extinction at the Permian/Triassic boundary, and by autochthonous micrite and synsedimentary marine cement. The absence of metazoan reef builders, such as sponges and corals, reflects the fact that microbes were the first organisms to recover after the Permian/Triassic crisis under unusual marine conditions and that their main role in reef formation was sediment stabilization along the upper slopes. The lower slope is mostly detrital, being dominated by platform-derived bioclastic rudstones and crinoidal floatstones, which are interbedded with basinal carbonate hemipelagics. The toe-of-slope is composed of pelagic wackestones framed by thin tongues of intraclast breccia. All these observations are in agreement with the slopeshedding model described for the Pennsylvanian microbial margin in Asturias (northern Spain) and the Anisian- Ladinian flat-topped, steep-rimmed Latemar platform (Dolomites, Italy).

As most of the Anisian reefs were described from western and eastern Tethys (Southern Alps, Hungary, China), the occurrence of the early Middle Anisian Tubiphytes-reef from North Dobrogea (Romania) contributes to resolving the puzzle of the geographic distribution of reef recovery in the Middle Triassic.

Keywords: Anisian (Middle Triassic); Carbonate slope; Microbialites; Tubiphytes- buildup; North Dobrogea; Romania.

References

  • Antoshkina, A.I. 1998. Organic buildups and reefs on the Paleozoic carbonate platform margin, Pechora Urals, Russia. Sedimentary Geology, 118, 187-211.Google Scholar

  • Bahamonde, J.R., Merino-Tomé, O.A. and Heredia, N. 2007. A Pennsylvanian microbial boundstone-dominated carbonate shelf in a distal foreland margin (Picos de Europa Province, NW Spain). Sedimentary Geology, 198, 167-193.Google Scholar

  • Banks, C.J. and Robinson, A.G. 1997. Mesozoic Strike-Slip Back-Arc Basins of the Western Black Sea Region. In: Robinson, A.G. (Ed.), Regional and petroleum geology of the Black Sea and surrounding region. AAPG Memoir, 68, 53-61.Google Scholar

  • Bebout, D.G. and Kerans, C. 1993. Guide to the Permian Reef Geology Trial, McKittrick Canyon, Guadalupe Mountains National Park, West Texas. Guidebook 26, pp. 1-46.Google Scholar

  • Bureau of Economic Geology, University of Texas.Google Scholar

  • Berra, F., Rettori, R. and Bassi, D. 2005. Recovery of carbonate platform production in the Lombardy Basin during the Anisian: paleoecological significance and constrain on paleogeographic evolution. Facies, 50 (3-4), 615-627.CrossrefGoogle Scholar

  • Berra, F., Balini, M., Levera, M., Nicora, A. and Salamati, R. 2012. Anatomy of carbonate mounds from the Middle Anisian of Nakhlak (Central Iran): architecture and age of a subtidal microbial-bioclastic carbonate factory. Facies, 58, 685-705.Google Scholar

  • Blendinger, W. 1983. Anisian sedimentation and tectonics of the M. Pore - M. Cernera area (Dolomites). Rivista Italiana di Paleontologia e Stratigrafia, 89, 175-208.Google Scholar

  • Bucher, H. 1992. Ammonoids of the Hyatti Zone and the Anisian transgression in the Triassic Star Peak Group, northwestern Nevada, USA. Palaeontographica, A 223, 137-166.Google Scholar

  • Chuvashov, B.I. 1983. Permian Reefs of the Urals. Facies, 8 (1), 191-212.CrossrefGoogle Scholar

  • Croquette, P.W. and Pray, L.C. 1970. Geologic nomenclature and classification of porosity in sedimentary carbonate rocks. American Association of Petroleum Geologists Bulletin, 54 (2), 207-250.Google Scholar

  • Croquette, P.W. and James, N.P. 1987. Diagenesis 12. Diagenesis in limestones 3. The deep burial environment. Geoscience Canada, 14, 3-35.Google Scholar

  • Della Porta, G., Kenter, J.A.M., Bahamonde, J.R., Immenhauser, A. and Villa, E. 2003. Microbial Boundstones Dominated Carbonate Slope (Upper Carboniferous, N Spain): Microfacies, Lithofacies Distribution and Stratal Geometry. Facies, 49 (1), 175-208.Google Scholar

  • Della Porta, G., Kenter, J.A.M. and Bahamonde, J.R. 2004. Depositional facies and stratal geometry of an Upper Carboniferous prograding and aggrading high-relief carbonate platform (Cantabrian Mountains, N Spain). Sedimentology , 51, 267-295.Google Scholar

  • Emmerich, A., Zamparelli, V., Bechstädt, T. and Zühlke, R. 2005. The reefal margin and slope of a Middle Triassic carbonate platform: the Latemar (Dolomites, Italy). Facies , 50 (3-4), 573-614.CrossrefGoogle Scholar

  • Enos, P., Wei, J.I. and Yan, Y.J. 1997. Facies distribution and retreat of Middle Triassic platform margin, Guizhou Province, South China. Sedimentology, 44, 563-584.Google Scholar

  • Enos, P., Lehrmann, D.J., Jiayong, W., Youyi, Y., Jiafei, X., Chaichin, D.H., Minzonni, M., Berri, A.C. and Montgomery, P. 2006. Triassic Evolution of the Yangtze Platform in Guizhou Province, People’s Republic of China. Geological Society of America, Special Paper, 417, 1-105.Google Scholar

  • Flügel, E. 1994. Pangean shelf carbonates: Controls and paleoclimatic significance of Permian and Triassic reefs. Geological Society of America Special Papers, 288, 247-266.Google Scholar

  • Flügel, E. 2002. Triassic reef patterns. In: Kiessling, W., Flügel, E. and Golonka, J. (Eds), Phanerozoic reef patterns. SEPM Special Publication, 72, 735-744. Tulsa.Google Scholar

  • Flügel, E. 2010. Microfacies of Carbonate Rocks, 2 nd Edition, pp. 1-984. Springer; Berlin - Heidelberg.Google Scholar

  • Flügel, E. and Stanley, G.D. 1984. Reorganisation, development and evolution of post-Permian reefs and reef organisms. Paleontographica Americana, 54, 177-186.Google Scholar

  • Fois, E. and Gaetani, M. 1984. The recovery of reef-building communities and the role of cnidarians in carbonate sequences of the Middle Triassic (Anisian) in the Italian Dolomites. Paleontographica Americana, 54, 191-200.Google Scholar

  • Gaetani, M., Fois, E., Jadoul, F. and Nicora, A. 1981. Nature and evolution of Middle Triassic carbonate buildups in the Dolomites (Italy). Marine Geology, 44 (1-2), 25-57.CrossrefGoogle Scholar

  • Gaetani, M. and Gorza, M. 1989. The Anisian (Middle Triassic) carbonate bank of Camorelli (Lombardy, southern Alps). Facies, 21 (1), 41-56.CrossrefGoogle Scholar

  • Grammer, G.M., Ginsburg, R.N., Swart, P.K., McNeil, D.F., Jull, A.J.T. and Prezbindowski, D.R. 1993. Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize. Journal of Sedimentary Petrology, 63 (5), 983-989.Google Scholar

  • Grădinaru, E. 1988. Jurassic sedimentary rocks and bimodal volcanics of the Cîrjelari-Camena Outcrop Belt: evidence for a transtensile regime of the Peceneaga-Camena Fault. Studii și Cercetări de Geologie, Geofizică, Geografie, Seria Geologie, 33, 97-121.Google Scholar

  • Grădinaru, E. 1995. Mesozoic rocks in North Dobrogea: an overview. In: Săndulescu, M. and Grădinaru, E. (Eds), IGCP Project No. 369, Comparative Evolution of PeriTethyan Rift Basins. Central and North Dobrogea, Romania, October 1-4, 1995. Field Guidebook, pp. 17-28, Bucharest.Google Scholar

  • Grădinaru, E. 2000. Introduction to the Triassic Geology of North Dobrogea Orogene. In: Grădinaru, E. (Ed.), Workshop on the Lower-Middle Triassic (Olenekian-Anisian) boundary, 7-10 June 2000, Tulcea, Romania, Conference and Field Trip. Field Trip Guide, pp. 5-37, Bucharest.Google Scholar

  • Harris, M. T. 1993. Reef fabrics, biotic crusts and syndepositional cements of the Latemar reef margin (Middle Triassic), Northern Italy. Sedimentology, 40, 383-401.CrossrefGoogle Scholar

  • Harris, M.T. 1994. The foreslope and toe-of-slope facies of the Middle Triassic Latemar buildup (Dolomites, Northern Italy). Journal of Sedimentary Research, 64 (2), 132-145.Google Scholar

  • Kenter, J.A.M., Harris, P.M. and Della Porta, G. 2005. Steep microbial boundstone-dominated platform margins - examples and implications. Sedimentary Geology, 178, 5-30.Google Scholar

  • Keim, L. and Schlager,W. 1999. Automicrite Facies on Steep Slopes (Triassic, Dolomites, Italy). Facies, 41 (1), 15-26.CrossrefGoogle Scholar

  • Keim, L. and Schlager, W. 2001. Quantitative compositional analysis of a Triassic carbonate platform (Southern Alps, Italy). Sedimentary Geology, 139, 261-283.Google Scholar

  • Kiessling,W. 2010. Reef expansion during the Triassic: Spread of photosymbiosis balancing climatic cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 11-19.Google Scholar

  • Kiessling, W., Flügel, E. and Golonka, J. 1999. Paleoreef maps: evaluation of a comprehension database on Phanerozoic reefs. AAPG Bulletin, 83, 1552-1587.Google Scholar

  • Korte, C., Kozur, H. and Veizer, J. 2005. δ 13 C and δ 18 O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature. Palaeogeography, Palaeoclimatology, Palaeoecology, 226, 287-306.Google Scholar

  • Lehrmann, D.J. 1999. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang basin, south China. Geology, 27 (4), 359-362.CrossrefGoogle Scholar

  • Lehrmann, D.J., Payne, J.L., Pei, D., Enos, P., Druke, D., Steffen, K., Zhang, J., Wei, J., Orchard, M. and Ellwood, B. 2007. Record of the end-Permian extinction and Triassic biotic recovery in the Chongzuo-Pingguo platform, southern Nanpanjiang basin, Guangxi, south China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 200-217.Google Scholar

  • Lighty, R.G. 1985. Preservation of internal reef porosity and diagenetic sealing of submerged early Holocene barrier reef, southeast Florida shelf. SEPM Special Publication, 36, 123-152. Tulsa.Google Scholar

  • Machel, H.G. 2004. Concepts and models of dolomitization: a critical reappraisal. In: Braithwaite, C.J.R., Rizzi, G. and Darke, G. (Eds), The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society, London, Special Publications, 235, 7-63.Google Scholar

  • Marangon, A., Gattolin, G., Della Porta, G. and Preto, N. 2011. The Latemar: A flat-topped, steep fronted platform dominated by microbialites and synsedimentary cements. Sedimentary Geology, 240, 97-114.Google Scholar

  • Mietto, P. and Manfrin, S. 1995. A high resolution Middle Triassic ammonoid standard scale in the Tethys Realm. A preliminary report. Bulletin de la Société Géologique de France, 166 (5), 539-563.Google Scholar

  • Mirăuță, E. and Panin, N. 1976. Geological Map of Romania, Scale 1:50,000, Sheet 136c Mahmudia, Institute of Geology and Geophysics, Bucharest.Google Scholar

  • Monnet, C. and Bucher, H. 2006. Anisian (Middle Triassic) ammonoids from North America: quantitative biochronology and biodiversity. Stratigraphy, 2 (4), 281-296.Google Scholar

  • Mundy, D.J.C. 1994. Microbialite-sponge-bryozoan-coral framestones in Lower Carboniferous (late Visean) buildups of northern England (UK). In: Embry, A.F., Beauchamp, B. and Glass, D.J. (Eds), Pangea: Global Environments and Resources. Canadian Society of Petroleum Geologists, Memoir, 17, 713-729.Google Scholar

  • Okay, A.I., Şengör, A.M.C. and Görür, N. 1994. Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology, 22 (3), 267-270.CrossrefGoogle Scholar

  • Payne, J.L., Lehrmann, D.J., Christensen, S., Wei, J. and Knoll, A.H. 2006. Environmental and biological controls on the initiation and growth of a Middle Triassic (Anisian) Reef Complex on the Great Bank of Guizhou, Guizhou Province, China. Palaios, 21, 325-343.Google Scholar

  • Payne, J.L., Summers, M., Rego, B.L., Altiner, D., Wei, J., Yu, M. and Lehrmann, D.J. 2011. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction. Paleobiology, 37 (3), 409-425.CrossrefGoogle Scholar

  • Peterhänsel, A. and Egenhoff, S.O. 2005. Sea level changes versus hydrothermal diagenesis: Origin of Triassic carbonate platform cycles in the Dolomites, Italy: Discussion. Sedimentary Geology, 178, 145-149.CrossrefGoogle Scholar

  • Playford, P.E., Hurley, N.F., Kerans, C. and Middleton, M. 1989. Reefal platform development, Devonian of the Canning Basin, Western Australia. In: Crevello, P.D., Wilson, J.L., Sarg, J.F. and Read, J.F. (Eds): Controls on carbonate platforms and basin development. SEPM Special Publication, 44, 187-202. Tulsa.Google Scholar

  • Pratt, B.R. 1995. The origin, biota and evolution of deep-water mud-mounds. In: Monty, C.L.V., Bosence, D.W.J., Bridges, P.H. and Pratt, B.R. (Eds): Carbonate Mud- Mounds. Their Origin and Evolution. Special Publication of the International Association of Sedimentologists Series , 23, pp. 49-123. Wiley-Blackwell.Google Scholar

  • Preto, N., Kustatscher, E. and Wignall, P.B. 2010. Triassic climates - State of art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 1-10.Google Scholar

  • Preto, N., Franceschi, M., Gattolin, G., Massironi, M., Riva, A., Gramigna, P., Bertoldi, L. and Nardon, S. 2011. The Latemar: A Middle Triassic polygonal fault-block platform controlled by synsedimentary tectonics. Sedimentary Geology, 234, 1-18.Google Scholar

  • Riding, R. and Guo, L. 1992. Affinities of Tubiphytes. Palaeontology, 35 (1), 37-49.Google Scholar

  • Rollins, H.B. and Donahue, J. 1975. Towards a theoretical basis of paleoecology: concepts of community developments. Lethaia, 8, 255-270.CrossrefGoogle Scholar

  • Russo, F., Mastandrea, A., Stefani, M. and Neri, C. 2000. Carbonate facies dominated by syndepositional cements: a key component of Middle Triassic platforms. The Marmolada case history (Dolomites, Italy). Facies, 42 (1), 211-226.CrossrefGoogle Scholar

  • Saller, A.H., Harris, P.M., Kirkland, B.L. and Mazzullo, S.J. 1999. Geologic Framework of the Capitan Reef. SEPM Special Publication, 65, pp. 1-224.Google Scholar

  • Săndulescu, M. 1995. Dobrogea within the Carpathian Foreland. In: Săndulescu, M. and Grădinaru, E. (Eds), IGCP Project No. 369, Comparative Evolution of PeriTethyan Rift Basins. Central and North Dobrogea, Romania, October 1-4, 1995. Field Guidebook, pp. 1-4, Bucharest.Google Scholar

  • Schlager, W. 2000. Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate factories. In: Insalaco, E., Skelton, P.W., Palmer, T.J. (Eds), Carbonate platform systems: components and interactions. Geological Society, London, Special Publication, 178, 217-227.Google Scholar

  • Schlager, W. 2003. Benthic carbonate factories of the Phanerozoic. International Journal of Earth Sciences, 92 (4), 445-464.CrossrefGoogle Scholar

  • Seeling, M., Emmerich, A., Bechstädt, T. and Zühlke, R. 2005. Accomodation/sedimentation development and massive early marine cementation: Latemar vs. Concarena (Middle/Upper Triassic, Southern Alps). Sedimentary Geology, 175, 439-457.Google Scholar

  • Senowbari-Daryan, B. 2013. Tubiphytes Maslov, 1956 and description of similar organisms from Triassic reefs of the Tethys. Facies, 59, 75-112.Google Scholar

  • Senowbari-Daryan, B., Zühlke, R., Bechstädt, T. and Flügel, E. 1993. Anisian (Middle Triassic) Buildups of the Northern Dolomites (Italy): The Recovery of the Reef Communities after the Permian/ Triassic Crisis. Facies, 28 (1), 181-256.CrossrefGoogle Scholar

  • Senowbari-Daryan, B., Bucur, I.I., Schlagintweit, F., Săsăran, E. and Matyszkiewicz, J. 2008. Crescentinella, a new name for “Tubiphytes” morronensis Crescenti, 1969: an enigmatic Jurassic-Cretaceous microfossil. Geologica Croatica, 61 (2-3), 185-214.Google Scholar

  • Şengör, A.M.C. 1984. The Cimmeride Orogenic System and the Tectonics of Eurasia. Geological Society of America, Special Paper, 195, IX + 82 pp.Google Scholar

  • Şengör, A.M.C. 1986. Die Alpiden und die Kimmeriden: die verdoppelte Geschichte der Tethys. Geologische Rundschau , 75, 501-510.Google Scholar

  • Shen, J., Yu, C. and Bao, H. 1997. A Late Devonian (Famennian) Renalcis-Epiphyton reef at Zhaijiang, Guilin, South China. Facies, 37 (1), 95-210.Google Scholar

  • Shevyrev, A.A. 1990. Ammonoids and chronostratigraphy of the Triassic. pp. 1-179. Nauka, Moscow. [In Russian] Shevyrev, A.A. 1995. Triassic ammonites of northwestern Caucasus, pp. 1-174. Nauka, Moscow. [In Russian] Silberling, N.J. and Nichols, K.M. 1982. Middle Triassic Molluscan Fossils of Biostratigraphic Significance from the Humboldt Range, Northwestern Nevada. Geological Survey Professional Paper 1207, V + 77 pp.Google Scholar

  • Stanley, G.D. 1988. The History of Early Mesozoic reef communities: A three-step process. Palaios, 3, 170-183.Google Scholar

  • Stefani, M., Furin, S. and Gianolla, P. 2010. The changing climate framework and depositional dynamics of Triassic carbonate platforms from the Dolomites. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 43-57.Google Scholar

  • Tinker, S.W. 1998. Shelf-to-basin facies distributions and sequence stratigraphy of a steep-rimmed carbonate margin: Capitan depositional system, McKittrick Canyon, New Mexico and Texas. Journal of Sedimentary Research , 68 (6), 1146-1174.CrossrefGoogle Scholar

  • Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G. and Strass, H. 1999. 87 Sr/ 86 Sr, δ 13Google Scholar

  • C, and δ 18 O evolution of Phanerozoic seawater. Chemical Geology, 161, 59-88.Google Scholar

  • Velledits, F., Péró, C., Blau, J., Senowbari-Daryan, B., Kovács, S., Piros, O., Pocsai, T., Szügyi-Simon, H., Dumitrică, P. and Pálfi, J. 2011. The oldest Triassic platform margin reef from the Alpine-Carpathian region (Aggtelek, NE Hungary): platform evolution, reefal biota and biostratigraphic framework. Rivista Italiana di Paleontologia e Stratigrafia , 117 (2), 221-268.Google Scholar

  • Velledits, F., Hips, K. and Péró, C. 2012. Lower and Middle Triassic succession in Aggtelek Karst. IGCP 572 field trip POST 2. June 5-7, 2012. 1-33.Google Scholar

  • Visarion, M., Săndulescu, M., Roșca, V., Stănică, D., and Atanasiu, L. 1990. La Dobrogea dans le cadre de l’avant pays carpatique. Revue Roumaine de Géophysique, 34, 55-65.Google Scholar

  • Webb, G.E. 1996. Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)? Sedimentology, 43, 947-971.CrossrefGoogle Scholar

  • Weidlich, O. 2002. Middle and Late Permian reefs - distributional patterns and reservoir potential. In: Kiessling, W., Flügel, E. and Golonka, J. (Eds), Phanerozoic Reef Patterns. SEPM Special Publication, 72, 339-390. Tulsa.Google Scholar

  • Wood, R. 1999. Reef evolution, 354 p. Oxford University Press; Oxford.Google Scholar

  • Wood, R. 2000. Novel paleoecology of a postextinction reef: Famennian (Late Devonian) of the Canning basin, northwestern Australia. Geology, 28 (11), 987-990.CrossrefGoogle Scholar

  • Wood, R. 2001. Are reefs and mud mounds really so different? Sedimentary Geology, 145, 161-171. Google Scholar

About the article

Received: 2013-08-20

Accepted: 2014-05-15

Published Online: 2014-07-02

Published in Print: 2014-06-01


Citation Information: Acta Geologica Polonica, Volume 64, Issue 2, Pages 189–223, ISSN (Online) 2300-1887, DOI: https://doi.org/10.2478/agp-2014-0011.

Export Citation

© Acta Geologica Polonica. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Akira Miyahigashi, Hidetoshi Hara, Ken-ichiro Hisada, Nobuhiko Nakano, Thasinee Charoentitirat, Punya Charusiri, Keo Khamphavong, Rossana Martini, and Katsumi Ueno
Geobios, 2017

Comments (0)

Please log in or register to comment.
Log in